As electronic components approach their fundamental physical limits, molecular electronics offer a promising alternative for next-generation computing and memory technologies. This simulative study explores the potential of rotaxane-based Single Molecule Junctions (SMJs) for memory applications. Through a combination of Molecular Dynamics (MD) simulations and Metadynamics (MetaD) analysis, we identify two distinct molecular states capable of encoding binary information. The energetic barriers to state transitions are evaluated, revealing the mechanisms for data encoding. Furthermore, electrical transport calculation demonstrates a significant current difference between the two configurations, supporting the feasibility of a current-driven readout for conformational-based memory. Our findings highlight the potential of rotaxane-based SMJs for non-volatile, high-density, low-power memory storage, positioning them as strong candidates for future molecular memories in nanocomputing applications.

Rotaxane-Based Single Molecule Junctions for Memory Applications / Listo, Roberto; Mo, Fabrizio; Ravera, Federico; Vezzoli, Andrea; Vacca, Marco; Piccinini, Gianluca; Graziano, Mariagrazia; Ardesi, Yuri. - (2025), pp. 75-79. (Intervento presentato al convegno 2025 IEEE 25th International Conference on Nanotechnology (NANO) tenutosi a Washington DC (USA) nel 13-16 July 2025) [10.1109/NANO63165.2025.11113739].

Rotaxane-Based Single Molecule Junctions for Memory Applications

Roberto Listo;Federico Ravera;Marco Vacca;Gianluca Piccinini;Mariagrazia Graziano;Yuri Ardesi
2025

Abstract

As electronic components approach their fundamental physical limits, molecular electronics offer a promising alternative for next-generation computing and memory technologies. This simulative study explores the potential of rotaxane-based Single Molecule Junctions (SMJs) for memory applications. Through a combination of Molecular Dynamics (MD) simulations and Metadynamics (MetaD) analysis, we identify two distinct molecular states capable of encoding binary information. The energetic barriers to state transitions are evaluated, revealing the mechanisms for data encoding. Furthermore, electrical transport calculation demonstrates a significant current difference between the two configurations, supporting the feasibility of a current-driven readout for conformational-based memory. Our findings highlight the potential of rotaxane-based SMJs for non-volatile, high-density, low-power memory storage, positioning them as strong candidates for future molecular memories in nanocomputing applications.
2025
979-8-3315-1271-2
File in questo prodotto:
File Dimensione Formato  
IEEENANO2025_RotaxaneSMJ_AAM.pdf

accesso aperto

Descrizione: AAM
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri
Rotaxane-Based_Single_Molecule_Junctions_for_Memory_Applications.pdf

accesso riservato

Descrizione: ARTICOLO PRINCIPALE
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3002363