Graph clustering is a fundamental task in network analysis, with applications ranging from community detection to protein complex identification. While Graph Neural Networks (GNNs) have shown promising results in this domain, they often struggle to balance local structure preservation with global cluster separation. We present a novel information-theoretic framework that enhances graph clustering through differentiable Rényi entropy optimization. Our approach introduces a computationally efficient masked entropy loss that encourages informative node representations while respecting graph topology. By integrating this framework with state-of-the-art GNN architectures, we achieve significant improvements in clustering quality across multiple benchmark datasets.

Entropy-Guided Graph Clustering via Rényi Optimization / Begga, Ahmed; Beretta, Guglielmo; Vascon, Sebastiano; Escolano, Francisco; Lozano, Miguel Angel; Pelillo, Marcello. - ELETTRONICO. - 15727:(2025), pp. 189-199. (Intervento presentato al convegno 14th IAPR-TC15 International Workshop on Graph-Based Representations in Pattern Recognition (GbRPR 2025) tenutosi a Caen (FRA) nel June 25–27, 2025) [10.1007/978-3-031-94139-9_18].

Entropy-Guided Graph Clustering via Rényi Optimization

Beretta, Guglielmo;
2025

Abstract

Graph clustering is a fundamental task in network analysis, with applications ranging from community detection to protein complex identification. While Graph Neural Networks (GNNs) have shown promising results in this domain, they often struggle to balance local structure preservation with global cluster separation. We present a novel information-theoretic framework that enhances graph clustering through differentiable Rényi entropy optimization. Our approach introduces a computationally efficient masked entropy loss that encourages informative node representations while respecting graph topology. By integrating this framework with state-of-the-art GNN architectures, we achieve significant improvements in clustering quality across multiple benchmark datasets.
2025
9783031941382
9783031941399
File in questo prodotto:
File Dimensione Formato  
GbrPR2025_Clustering_Entropy.pdf

embargo fino al 08/06/2026

Descrizione: Postprint_article
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 679.63 kB
Formato Adobe PDF
679.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
978-3-031-94139-9_18.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3001666