Graph clustering is a fundamental task in network analysis, with applications ranging from community detection to protein complex identification. While Graph Neural Networks (GNNs) have shown promising results in this domain, they often struggle to balance local structure preservation with global cluster separation. We present a novel information-theoretic framework that enhances graph clustering through differentiable Rényi entropy optimization. Our approach introduces a computationally efficient masked entropy loss that encourages informative node representations while respecting graph topology. By integrating this framework with state-of-the-art GNN architectures, we achieve significant improvements in clustering quality across multiple benchmark datasets.
Entropy-Guided Graph Clustering via Rényi Optimization / Begga, Ahmed; Beretta, Guglielmo; Vascon, Sebastiano; Escolano, Francisco; Lozano, Miguel Angel; Pelillo, Marcello. - ELETTRONICO. - 15727:(2025), pp. 189-199. (Intervento presentato al convegno 14th IAPR-TC15 International Workshop on Graph-Based Representations in Pattern Recognition (GbRPR 2025) tenutosi a Caen (FRA) nel June 25–27, 2025) [10.1007/978-3-031-94139-9_18].
Entropy-Guided Graph Clustering via Rényi Optimization
Beretta, Guglielmo;
2025
Abstract
Graph clustering is a fundamental task in network analysis, with applications ranging from community detection to protein complex identification. While Graph Neural Networks (GNNs) have shown promising results in this domain, they often struggle to balance local structure preservation with global cluster separation. We present a novel information-theoretic framework that enhances graph clustering through differentiable Rényi entropy optimization. Our approach introduces a computationally efficient masked entropy loss that encourages informative node representations while respecting graph topology. By integrating this framework with state-of-the-art GNN architectures, we achieve significant improvements in clustering quality across multiple benchmark datasets.File | Dimensione | Formato | |
---|---|---|---|
GbrPR2025_Clustering_Entropy.pdf
embargo fino al 08/06/2026
Descrizione: Postprint_article
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
679.63 kB
Formato
Adobe PDF
|
679.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
978-3-031-94139-9_18.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3001666