This paper introduces a novel active learning method for iteratively building a suitable training set within the scope of Gaussian process models applied to the uncertainty quantification of multi-output system responses. In particular, the proposed strategy offers a significant advantage by extending the already existing generic techniques that typically account for a single scalar output only. This approach extends the training to all outputs, thus improving the accuracy of the overall response of the system in a more comprehensive manner.
A Multi-Output Active Learning Method for the Uncertainty Quantification of PCB Lines / Cusano, Michele; Trinchero, Riccardo; Stievano, Igor S.; Grivet-Talocia, Stefano; Manfredi, Paolo; Schatt, Stefanie. - (2025), pp. 1-3. (Intervento presentato al convegno 2025 IEEE 29th Workshop on Signal and Power Integrity (SPI) tenutosi a Gaeta (Ita) nel 11-14 May 2025) [10.1109/spi64682.2025.11014393].
A Multi-Output Active Learning Method for the Uncertainty Quantification of PCB Lines
Cusano, Michele;Trinchero, Riccardo;Stievano, Igor S.;Grivet-Talocia, Stefano;Manfredi, Paolo;
2025
Abstract
This paper introduces a novel active learning method for iteratively building a suitable training set within the scope of Gaussian process models applied to the uncertainty quantification of multi-output system responses. In particular, the proposed strategy offers a significant advantage by extending the already existing generic techniques that typically account for a single scalar output only. This approach extends the training to all outputs, thus improving the accuracy of the overall response of the system in a more comprehensive manner.File | Dimensione | Formato | |
---|---|---|---|
cnf-2025-spi-GP-author.pdf
accesso aperto
Descrizione: cnf-2025-spi-GP-author
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri |
cnf-2025-spi-GP-ieee.pdf
accesso riservato
Descrizione: cnf-2025-spi-GP-ieee
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.39 MB
Formato
Adobe PDF
|
2.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3000470