This paper introduces a fully behavioral machine learning methodology for generating compact and accurate models of IC buffers. The proposed approach leverages a vector-valued implementation of the kernel Ridge regression to construct models based on observations of device transient responses recorded during normal operation. A key focus is placed on developing an efficient compression scheme to minimize model complexity (i.e., the number of regression coefficients), resulting in a compact mathematical representation that can be efficiently integrated into any SPICE-based solver.

Compressed SPICE-Compliant IC Models via Machine Learning Kernel Regression / Atlante, Marco; Trinchero, Riccardo; Bradde, Tommaso; Manfredi, Paolo; Stievano, Igor S.. - ELETTRONICO. - (2024), pp. 1-3. (Intervento presentato al convegno IEEE Electrical Design of Advanced Packaging and Systems (EDAPS) tenutosi a Bangalore (Ind) nel 17-19 December 2024) [10.1109/edaps64431.2024.10988464].

Compressed SPICE-Compliant IC Models via Machine Learning Kernel Regression

Atlante, Marco;Trinchero, Riccardo;Bradde, Tommaso;Manfredi, Paolo;Stievano, Igor S.
2024

Abstract

This paper introduces a fully behavioral machine learning methodology for generating compact and accurate models of IC buffers. The proposed approach leverages a vector-valued implementation of the kernel Ridge regression to construct models based on observations of device transient responses recorded during normal operation. A key focus is placed on developing an efficient compression scheme to minimize model complexity (i.e., the number of regression coefficients), resulting in a compact mathematical representation that can be efficiently integrated into any SPICE-based solver.
File in questo prodotto:
File Dimensione Formato  
cnf-2024-EDAPS-IC-IEEE.pdf

accesso riservato

Descrizione: cnf-2024-EDAPS-IC-IEEE
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 559.95 kB
Formato Adobe PDF
559.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
cnf-2024-EDAPS-IC-Author.pdf

accesso aperto

Descrizione: cnf-2024-EDAPS-IC-Author
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 503.01 kB
Formato Adobe PDF
503.01 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3000088