This paper introduces a fully behavioral machine learning methodology for generating compact and accurate models of IC buffers. The proposed approach leverages a vector-valued implementation of the kernel Ridge regression to construct models based on observations of device transient responses recorded during normal operation. A key focus is placed on developing an efficient compression scheme to minimize model complexity (i.e., the number of regression coefficients), resulting in a compact mathematical representation that can be efficiently integrated into any SPICE-based solver.
Compressed SPICE-Compliant IC Models via Machine Learning Kernel Regression / Atlante, Marco; Trinchero, Riccardo; Bradde, Tommaso; Manfredi, Paolo; Stievano, Igor S.. - ELETTRONICO. - (2024), pp. 1-3. (Intervento presentato al convegno IEEE Electrical Design of Advanced Packaging and Systems (EDAPS) tenutosi a Bangalore (Ind) nel 17-19 December 2024) [10.1109/edaps64431.2024.10988464].
Compressed SPICE-Compliant IC Models via Machine Learning Kernel Regression
Atlante, Marco;Trinchero, Riccardo;Bradde, Tommaso;Manfredi, Paolo;Stievano, Igor S.
2024
Abstract
This paper introduces a fully behavioral machine learning methodology for generating compact and accurate models of IC buffers. The proposed approach leverages a vector-valued implementation of the kernel Ridge regression to construct models based on observations of device transient responses recorded during normal operation. A key focus is placed on developing an efficient compression scheme to minimize model complexity (i.e., the number of regression coefficients), resulting in a compact mathematical representation that can be efficiently integrated into any SPICE-based solver.| File | Dimensione | Formato | |
|---|---|---|---|
| cnf-2024-EDAPS-IC-IEEE.pdf accesso riservato 
											Descrizione: cnf-2024-EDAPS-IC-IEEE
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										559.95 kB
									 
										Formato
										Adobe PDF
									 | 559.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| cnf-2024-EDAPS-IC-Author.pdf accesso aperto 
											Descrizione: cnf-2024-EDAPS-IC-Author
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										503.01 kB
									 
										Formato
										Adobe PDF
									 | 503.01 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3000088
			
		
	
	
	
			      	