We introduce the lowest-order Neural Approximated Virtual Element Method, a novel polygonal method that relies on neural networks to eliminate the need for projection and stabilization operators in the Virtual Element Method. In this paper, we discuss its formulation and detail the strategy for training the underlying neural network. The viability of the new method is tested through numerical experiments on elliptic problems.
The Lowest-Order Neural Approximated Virtual Element Method / Berrone, Stefano; Oberto, Davide; Pintore, Moreno; Teora, Gioana. - 153 - 1:(2025). (Intervento presentato al convegno ENUMATH: European Conference on Numerical Mathematics and Advanced Applications tenutosi a Lisbona (Portogallo) nel Settembre 4-8 2025) [10.1007/978-3-031-86173-4_13].
The Lowest-Order Neural Approximated Virtual Element Method
Berrone, Stefano;Teora, Gioana
2025
Abstract
We introduce the lowest-order Neural Approximated Virtual Element Method, a novel polygonal method that relies on neural networks to eliminate the need for projection and stabilization operators in the Virtual Element Method. In this paper, we discuss its formulation and detail the strategy for training the underlying neural network. The viability of the new method is tested through numerical experiments on elliptic problems.| File | Dimensione | Formato | |
|---|---|---|---|
| navem_prooceding_pubblicato.pdf accesso riservato 
											Descrizione: Versione editoriale
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										986.83 kB
									 
										Formato
										Adobe PDF
									 | 986.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| final_main.pdf embargo fino al 25/04/2026 
											Descrizione: Accepted Manuscript
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										652.34 kB
									 
										Formato
										Adobe PDF
									 | 652.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999718
			
		
	
	
	
			      	