We introduce the lowest-order Neural Approximated Virtual Element Method, a novel polygonal method that relies on neural networks to eliminate the need for projection and stabilization operators in the Virtual Element Method. In this paper, we discuss its formulation and detail the strategy for training the underlying neural network. The viability of the new method is tested through numerical experiments on elliptic problems.

The Lowest-Order Neural Approximated Virtual Element Method / Berrone, Stefano; Oberto, Davide; Pintore, Moreno; Teora, Gioana. - 153 - 1:(2025). (Intervento presentato al convegno ENUMATH: European Conference on Numerical Mathematics and Advanced Applications tenutosi a Lisbona (Portogallo) nel Settembre 4-8 2025) [10.1007/978-3-031-86173-4_13].

The Lowest-Order Neural Approximated Virtual Element Method

Berrone, Stefano;Teora, Gioana
2025

Abstract

We introduce the lowest-order Neural Approximated Virtual Element Method, a novel polygonal method that relies on neural networks to eliminate the need for projection and stabilization operators in the Virtual Element Method. In this paper, we discuss its formulation and detail the strategy for training the underlying neural network. The viability of the new method is tested through numerical experiments on elliptic problems.
File in questo prodotto:
File Dimensione Formato  
navem_prooceding_pubblicato.pdf

accesso riservato

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 986.83 kB
Formato Adobe PDF
986.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
final_main.pdf

embargo fino al 25/04/2026

Descrizione: Accepted Manuscript
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 652.34 kB
Formato Adobe PDF
652.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2999718