Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. This article presents NeuroBench, a benchmark framework for neuromorphic algorithms and systems, which is collaboratively designed from an open community of researchers across industry and academia. NeuroBench introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent and hardware-dependent settings. For latest project updates, visit the project website (neurobench.ai).
The neurobench framework for benchmarking neuromorphic computing algorithms and systems / Yik, Jason; Van den Berghe, Korneel; den Blanken, Douwe; Bouhadjar, Younes; Fabre, Maxime; Hueber, Paul; Ke, Weijie; Khoei, Mina A.; Kleyko, Denis; Pacik-Nelson, Noah; Pierro, Alessandro; Stratmann, Philipp; Sun, Pao-Sheng Vincent; Tang, Guangzhi; Wang, Shenqi; Zhou, Biyan; Ahmed, Soikat Hasan; Vathakkattil Joseph, George; Leto, Benedetto; Micheli, Aurora; Mishra, Anurag Kumar; Lenz, Gregor; Sun, Tao; Ahmed, Zergham; Akl, Mahmoud; Anderson, Brian; Andreou, Andreas G.; Bartolozzi, Chiara; Basu, Arindam; Bogdan, Petrut; Bohte, Sander; Buckley, Sonia; Cauwenberghs, Gert; Chicca, Elisabetta; Corradi, Federico; de Croon, Guido; Danielescu, Andreea; Daram, Anurag; Davies, Mike; Demirag, Yigit; Eshraghian, Jason; Fischer, Tobias; Forest, Jeremy; Fra, Vittorio; Furber, Steve; Furlong, P. Michael; Gilpin, William; Gilra, Aditya; Gonzalez, Hector A.; Indiveri, Giacomo; Joshi, Siddharth; Karia, Vedant; Khacef, Lyes; Knight, James C.; Kriener, Laura; Kubendran, Rajkumar; Kudithipudi, Dhireesha; Liu, Shih-Chii; Liu, Yao-Hong; Ma, Haoyuan; Manohar, Rajit; Margarit-Taulé, Josep Maria; Mayr, Christian; Michmizos, Konstantinos; Muir, Dylan R.; Neftci, Emre; Nowotny, Thomas; Ottati, Fabrizio; Ozcelikkale, Ayca; Panda, Priyadarshini; Park, Jongkil; Payvand, Melika; Pehle, Christian; Petrovici, Mihai A.; Posch, Christoph; Renner, Alpha; Sandamirskaya, Yulia; Schaefer, Clemens J. S.; van Schaik, André; Schemmel, Johannes; Schmidgall, Samuel; Schuman, Catherine; Seo, Jae-sun; Sheik, Sadique; Shrestha, Sumit Bam; Sifalakis, Manolis; Sironi, Amos; Stewart, Kenneth; Stewart, Matthew; Stewart, Terrence C.; Timcheck, Jonathan; Tömen, Nergis; Urgese, Gianvito; Verhelst, Marian; Vineyard, Craig M.; Vogginger, Bernhard; Yousefzadeh, Amirreza; Zohora, Fatima Tuz; Frenkel, Charlotte; Reddi, Vijay Janapa. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 16:1(2025), pp. 1-24. [10.1038/s41467-025-56739-4]
The neurobench framework for benchmarking neuromorphic computing algorithms and systems
Leto, Benedetto;Fra, Vittorio;Urgese, Gianvito;
2025
Abstract
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. This article presents NeuroBench, a benchmark framework for neuromorphic algorithms and systems, which is collaboratively designed from an open community of researchers across industry and academia. NeuroBench introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent and hardware-dependent settings. For latest project updates, visit the project website (neurobench.ai).| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											s41467-025-56739-4.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										3.45 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								3.45 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999246
			
		
	
	
	
			      	