The evolve-filter (EF) model is a filter-based numerical stabilization for under-resolved convection-dominated flows. EF is a simple, modular, and effective strategy for both full-order models (FOMs) and reduced-order models (ROMs). It is well-known, however, that when the filter radius is too large, EF can be overdiffusive and yield inaccurate results. To alleviate this, EF is usually supplemented with a relaxation step. The relaxation parameter, however, is very sensitive with respect to the model parameters. In this paper, we propose a novel strategy to alleviate the EF overdiffusivity. Specifically, we leverage the variational multiscale (VMS) framework to separate the large resolved scales from the small resolved scales in the evolved velocity, and we use the filtered small scales to correct the large scales. Furthermore, in the new VMS-EF strategy, we use two different approaches to decompose the evolved velocity: the VMS Evolve-Filter-Filter-Correct (VMS-EFFC) and the VMS Evolve-Postprocess-Filter-Correct (VMS-EPFC) algorithms. The new VMS-based algorithms yield significantly more accurate results than the standard EF in both the FOM and the ROM simulations of a flow past a cylinder at Reynolds number Re = 1000.
Variational multiscale evolve and filter strategies for convection-dominated flows / Strazzullo, Maria; Ballarin, Francesco; Iliescu, Traian; Rebollo, Tomás Chacón. - In: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING. - ISSN 0045-7825. - 438:(2025), pp. 1-31. [10.1016/j.cma.2025.117811]
Variational multiscale evolve and filter strategies for convection-dominated flows
Strazzullo, Maria;
2025
Abstract
The evolve-filter (EF) model is a filter-based numerical stabilization for under-resolved convection-dominated flows. EF is a simple, modular, and effective strategy for both full-order models (FOMs) and reduced-order models (ROMs). It is well-known, however, that when the filter radius is too large, EF can be overdiffusive and yield inaccurate results. To alleviate this, EF is usually supplemented with a relaxation step. The relaxation parameter, however, is very sensitive with respect to the model parameters. In this paper, we propose a novel strategy to alleviate the EF overdiffusivity. Specifically, we leverage the variational multiscale (VMS) framework to separate the large resolved scales from the small resolved scales in the evolved velocity, and we use the filtered small scales to correct the large scales. Furthermore, in the new VMS-EF strategy, we use two different approaches to decompose the evolved velocity: the VMS Evolve-Filter-Filter-Correct (VMS-EFFC) and the VMS Evolve-Postprocess-Filter-Correct (VMS-EPFC) algorithms. The new VMS-based algorithms yield significantly more accurate results than the standard EF in both the FOM and the ROM simulations of a flow past a cylinder at Reynolds number Re = 1000.File | Dimensione | Formato | |
---|---|---|---|
StrazzulloBallarinIliescuRebollo.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
6.24 MB
Formato
Adobe PDF
|
6.24 MB | Adobe PDF | Visualizza/Apri |
postprint.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
5.5 MB
Formato
Adobe PDF
|
5.5 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999061