Challenges in the traditional cast-and-cure manufacturing of composite solid propellants, such as the use of mandrels and the toxicity of curing agents, are being addressed through new propellant formulations and additive manufacturing techniques. Within this framework, this study aimed to investigate the properties of UV-curable composite solid rocket propellants, focusing on their compatibility with advanced 3D printing technologies. Polybutadiene-based propellants incorporating a specific photoinitiator were examined. Key rheological properties, including the pseudoplasticity and pot-life, were assessed to evaluate the material’s behavior during the printing process. Furthermore, photopolymerization tests were performed using a customized delta illuminator to evaluate the conversion efficiency under UVA and UVC light sources. Concurrently, a modular Cartesian 3D printer was developed and preliminary tests were performed. Rheological tests also revealed a flow index n of 0.32 at 60 °C and 0.46 at 80 °C, indicating significant pseudoplastic behavior. The pot-life tests showed that the viscosity of the propellant reached the upper limit of 106 cP more quickly at higher temperatures, indicating a shorter time range of printability. UVA irradiation resulted in a polymerization conversion rate of about 90%, while UVC exposure did not significantly enhance the conversion rate beyond this value. Finally, the 3D printing tests confirmed the feasibility of producing solid propellant, though challenges related to material segregation and the extrusion consistency were observed. Material separation resulted in a significant impact on the printability, causing underextrusion and nozzle clogging, particularly with smaller nozzle diameters and higher extrusion pressures. Overall, this research represents a significant step forward in the development of UV-curable propellants for additive manufacturing, building on previous advancements by the research group. It demonstrates tangible progress in addressing key challenges such as the printability, material performance, and curing efficiency, while also highlighting areas requiring further refinement. These findings underscore the continuous evolution of this technology toward higher readiness levels, paving the way for its broader application in composite solid propellant manufacturing.
Evaluation of UV-Curable Solid Rocket Propellants’ Properties for Advanced 3D Printing Technologies / Masseni, Filippo; Tetti, Giacomo; Zumbo, Alessandra; Noe, Camilla; Polizzi, Giovanni; Stumpo, Leonardo; Ferrero, Andrea; Pastrone, Dario. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 15:6(2025). [10.3390/app15062933]
Evaluation of UV-Curable Solid Rocket Propellants’ Properties for Advanced 3D Printing Technologies
Filippo Masseni;Giacomo Tetti;Alessandra Zumbo;Camilla Noe;Giovanni Polizzi;Leonardo Stumpo;Andrea Ferrero;Dario Pastrone
2025
Abstract
Challenges in the traditional cast-and-cure manufacturing of composite solid propellants, such as the use of mandrels and the toxicity of curing agents, are being addressed through new propellant formulations and additive manufacturing techniques. Within this framework, this study aimed to investigate the properties of UV-curable composite solid rocket propellants, focusing on their compatibility with advanced 3D printing technologies. Polybutadiene-based propellants incorporating a specific photoinitiator were examined. Key rheological properties, including the pseudoplasticity and pot-life, were assessed to evaluate the material’s behavior during the printing process. Furthermore, photopolymerization tests were performed using a customized delta illuminator to evaluate the conversion efficiency under UVA and UVC light sources. Concurrently, a modular Cartesian 3D printer was developed and preliminary tests were performed. Rheological tests also revealed a flow index n of 0.32 at 60 °C and 0.46 at 80 °C, indicating significant pseudoplastic behavior. The pot-life tests showed that the viscosity of the propellant reached the upper limit of 106 cP more quickly at higher temperatures, indicating a shorter time range of printability. UVA irradiation resulted in a polymerization conversion rate of about 90%, while UVC exposure did not significantly enhance the conversion rate beyond this value. Finally, the 3D printing tests confirmed the feasibility of producing solid propellant, though challenges related to material segregation and the extrusion consistency were observed. Material separation resulted in a significant impact on the printability, causing underextrusion and nozzle clogging, particularly with smaller nozzle diameters and higher extrusion pressures. Overall, this research represents a significant step forward in the development of UV-curable propellants for additive manufacturing, building on previous advancements by the research group. It demonstrates tangible progress in addressing key challenges such as the printability, material performance, and curing efficiency, while also highlighting areas requiring further refinement. These findings underscore the continuous evolution of this technology toward higher readiness levels, paving the way for its broader application in composite solid propellant manufacturing.File | Dimensione | Formato | |
---|---|---|---|
applsci-15-02933.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2998197