Let $X\subseteq\pmathbb{P}^{n+1}$ be an integral hypersurface of degree $d$. We show that each locally Cohen--Macaulay instanton sheaf $\cE$ on $X$ with respect to $\cO_X\otimes\mathcal{O}_{\mathbb{P}^{n+1}}(1)$ in the sense of [V. Antonelli and G. Casnati, Instanton sheaves on projective schemes, J. Pure Appl. Algebra 227 (2023) 107246, Definition 1.3] yields the existence of Steiner bundles $\mathcal{G}$ and $\mathcal{F}$ on $\mathbb{P}^{n+1}$ of the same rank $r$ and a morphism $\varphi\colon \cG(-1)\to\cF^\vee$ such that the form defining $X$ to the power $\rk(\mathcal{E})$ is exactly $\det(\varphi)$. We inspect several examples for low values of $d$, $n$ and $\rk(\mathcal{E})$. In particular, we show that the form defining a smooth integral surface in $\mathbb{P}^3$ is the pfaffian of some skew--symmetric morphism $\varphi\colon \cmathcal{F}(-1)\to\mathcal{F}^\vee$, where $\mathcal{F}$ is a suitable Steiner bundle on $\mathbb{P}^3$ of sufficiently large even rank.
Steiner representations of hypersurfaces / Antonelli, Vincenzo; Casnati, Gianfranco. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - ELETTRONICO. - 36:4(2025), pp. 1-33. [10.1142/s0129167x24500812]
Steiner representations of hypersurfaces
Antonelli, Vincenzo;Casnati, Gianfranco
2025
Abstract
Let $X\subseteq\pmathbb{P}^{n+1}$ be an integral hypersurface of degree $d$. We show that each locally Cohen--Macaulay instanton sheaf $\cE$ on $X$ with respect to $\cO_X\otimes\mathcal{O}_{\mathbb{P}^{n+1}}(1)$ in the sense of [V. Antonelli and G. Casnati, Instanton sheaves on projective schemes, J. Pure Appl. Algebra 227 (2023) 107246, Definition 1.3] yields the existence of Steiner bundles $\mathcal{G}$ and $\mathcal{F}$ on $\mathbb{P}^{n+1}$ of the same rank $r$ and a morphism $\varphi\colon \cG(-1)\to\cF^\vee$ such that the form defining $X$ to the power $\rk(\mathcal{E})$ is exactly $\det(\varphi)$. We inspect several examples for low values of $d$, $n$ and $\rk(\mathcal{E})$. In particular, we show that the form defining a smooth integral surface in $\mathbb{P}^3$ is the pfaffian of some skew--symmetric morphism $\varphi\colon \cmathcal{F}(-1)\to\mathcal{F}^\vee$, where $\mathcal{F}$ is a suitable Steiner bundle on $\mathbb{P}^3$ of sufficiently large even rank.File | Dimensione | Formato | |
---|---|---|---|
SteinerPfaffianFINAL.pdf
embargo fino al 18/11/2025
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
484.52 kB
Formato
Adobe PDF
|
484.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Steiner representations.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
638.18 kB
Formato
Adobe PDF
|
638.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2998088