This paper introduces an alternative method for modeling RNA velocity within the Bayesian framework, employing zero-inflated distributions without the need for artificial preprocessing to handle RNA counts. Through a comparative analysis conducted on a real dataset, we illustrate the performance of our approach, showcasing outcomes comparable to those achieved with assumptions of Negative Binomial data on preprocessed observations. Our proposed model eliminates the requirement for arbitrary data filtering, thereby demonstrating its effectiveness in capturing the underlying biological dynamics.

Extending Bayesian Modelling of RNA Velocity / Sabbioni, Elena; Bibbona, Enrico; Mastrantonio, Gianluca; Sanguinetti, Guido. - (2025), pp. 200-205. (Intervento presentato al convegno e 52nd Scientific Meeting of the Italian Statistical Society tenutosi a Bari (Italy) nel June 17th to June 20th, 2024) [10.1007/978-3-031-64350-7_35].

Extending Bayesian Modelling of RNA Velocity

Sabbioni, Elena;Bibbona, Enrico;Mastrantonio, Gianluca;
2025

Abstract

This paper introduces an alternative method for modeling RNA velocity within the Bayesian framework, employing zero-inflated distributions without the need for artificial preprocessing to handle RNA counts. Through a comparative analysis conducted on a real dataset, we illustrate the performance of our approach, showcasing outcomes comparable to those achieved with assumptions of Negative Binomial data on preprocessed observations. Our proposed model eliminates the requirement for arbitrary data filtering, thereby demonstrating its effectiveness in capturing the underlying biological dynamics.
2025
9783031643491
9783031643507
File in questo prodotto:
File Dimensione Formato  
finalPaper.pdf

accesso riservato

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
SIS2024Sabbioni.pdf

embargo fino al 03/03/2026

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 906.26 kB
Formato Adobe PDF
906.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2998069