This paper introduces an alternative method for modeling RNA velocity within the Bayesian framework, employing zero-inflated distributions without the need for artificial preprocessing to handle RNA counts. Through a comparative analysis conducted on a real dataset, we illustrate the performance of our approach, showcasing outcomes comparable to those achieved with assumptions of Negative Binomial data on preprocessed observations. Our proposed model eliminates the requirement for arbitrary data filtering, thereby demonstrating its effectiveness in capturing the underlying biological dynamics.
Extending Bayesian Modelling of RNA Velocity / Sabbioni, Elena; Bibbona, Enrico; Mastrantonio, Gianluca; Sanguinetti, Guido. - (2025), pp. 200-205. (Intervento presentato al convegno e 52nd Scientific Meeting of the Italian Statistical Society tenutosi a Bari (Italy) nel June 17th to June 20th, 2024) [10.1007/978-3-031-64350-7_35].
Extending Bayesian Modelling of RNA Velocity
Sabbioni, Elena;Bibbona, Enrico;Mastrantonio, Gianluca;
2025
Abstract
This paper introduces an alternative method for modeling RNA velocity within the Bayesian framework, employing zero-inflated distributions without the need for artificial preprocessing to handle RNA counts. Through a comparative analysis conducted on a real dataset, we illustrate the performance of our approach, showcasing outcomes comparable to those achieved with assumptions of Negative Binomial data on preprocessed observations. Our proposed model eliminates the requirement for arbitrary data filtering, thereby demonstrating its effectiveness in capturing the underlying biological dynamics.File | Dimensione | Formato | |
---|---|---|---|
finalPaper.pdf
accesso riservato
Descrizione: Versione editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
SIS2024Sabbioni.pdf
embargo fino al 03/03/2026
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
906.26 kB
Formato
Adobe PDF
|
906.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2998069