This paper introduces an alternative method for modeling RNA velocity within the Bayesian framework, employing zero-inflated distributions without the need for artificial preprocessing to handle RNA counts. Through a comparative analysis conducted on a real dataset, we illustrate the performance of our approach, showcasing outcomes comparable to those achieved with assumptions of Negative Binomial data on preprocessed observations. Our proposed model eliminates the requirement for arbitrary data filtering, thereby demonstrating its effectiveness in capturing the underlying biological dynamics.
Extending Bayesian Modelling of RNA Velocity / Sabbioni, Elena; Bibbona, Enrico; Mastrantonio, Gianluca; Sanguinetti, Guido. - (2025), pp. 200-205. (Intervento presentato al convegno 52nd Scientific Meeting of the Italian Statistical Society tenutosi a Bari (Italy) nel June 17th to June 20th, 2024) [10.1007/978-3-031-64350-7_35].
Extending Bayesian Modelling of RNA Velocity
Sabbioni, Elena;Bibbona, Enrico;Mastrantonio, Gianluca;
2025
Abstract
This paper introduces an alternative method for modeling RNA velocity within the Bayesian framework, employing zero-inflated distributions without the need for artificial preprocessing to handle RNA counts. Through a comparative analysis conducted on a real dataset, we illustrate the performance of our approach, showcasing outcomes comparable to those achieved with assumptions of Negative Binomial data on preprocessed observations. Our proposed model eliminates the requirement for arbitrary data filtering, thereby demonstrating its effectiveness in capturing the underlying biological dynamics.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											finalPaper.pdf
										
																				
									
										
											 accesso riservato 
											Descrizione: Versione editoriale
										 
									
									
									
										
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
									
									
									
									
										
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										1.82 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											SIS2024Sabbioni.pdf
										
																				
									
										
											 embargo fino al 03/03/2026 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
									
									
									
									
										
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
									
									
										Dimensione
										906.26 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								906.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2998069
			
		
	
	
	
			      	