The photopolymerization process in 3D printing is considered greener once it involves a fast reaction and low energy consumption. Various reactions for photopolymerization can be used nowadays, but a special one is the thiol-ene “click” reaction that occurs in equimolar concentrations of thiol and alkene groups. In this sense, solventfree photopolymerizable formulations were prepared to contain non-modified castor oil, Trimethylolpropane tris(3-mercapto propionate), and cellulosic fillers from hemp, tagua, and walnut. All formulations presented conversions higher than 70% and fast polymerization rates. Moreover, the filled formulations presented excellent curing depths in fewer seconds of light exposition, an important factor for their applicability in 3D printing. Furthermore, the hemp filler formulation presented the highest crosslinking density as determined by the DMTA, and was selected for printing two complex structures (pyramid and honeycomb shape). The rheology analysis showed that the formulations had adequate viscosities for the printer. Lastly, all polymers presented at least 97% bio-based contents, with gel contents superior to 96%.
Thiol-Ene Photopolymerization and 3D Printing of Non-Modified Castor Oil Containing Bio-Based Cellulosic Fillers / Alarcon, Rafael Turra; Bergoglio, Matteo; Cavalheiro, Éder Tadeu Gomes; Sangermano, Marco. - In: POLYMERS. - ISSN 2073-4360. - ELETTRONICO. - 17:5(2025), pp. 1-19. [10.3390/polym17050587]
Thiol-Ene Photopolymerization and 3D Printing of Non-Modified Castor Oil Containing Bio-Based Cellulosic Fillers
Bergoglio, Matteo;Sangermano, Marco
2025
Abstract
The photopolymerization process in 3D printing is considered greener once it involves a fast reaction and low energy consumption. Various reactions for photopolymerization can be used nowadays, but a special one is the thiol-ene “click” reaction that occurs in equimolar concentrations of thiol and alkene groups. In this sense, solventfree photopolymerizable formulations were prepared to contain non-modified castor oil, Trimethylolpropane tris(3-mercapto propionate), and cellulosic fillers from hemp, tagua, and walnut. All formulations presented conversions higher than 70% and fast polymerization rates. Moreover, the filled formulations presented excellent curing depths in fewer seconds of light exposition, an important factor for their applicability in 3D printing. Furthermore, the hemp filler formulation presented the highest crosslinking density as determined by the DMTA, and was selected for printing two complex structures (pyramid and honeycomb shape). The rheology analysis showed that the formulations had adequate viscosities for the printer. Lastly, all polymers presented at least 97% bio-based contents, with gel contents superior to 96%.File | Dimensione | Formato | |
---|---|---|---|
Non modified castor oil-Rafael.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.4 MB
Formato
Adobe PDF
|
4.4 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2997922