This article discusses the mission performance of regional aircraft with hybrid-electric propulsion. The performance analyses are provided by mission simulations tools specifically developed for hybrid-electric aircraft flight dynamics. The hybrid-electric aircraft mission performance is assessed for the design point, identified by top level requirements, and for off-design missions, within the whole operating envelope. This work highlights that the operating features of hybrid-electric aircraft differ from those of aircraft of the same category with conventional thermal propulsion. This assessment is processed by properly analysing the aircraft payload-range diagram, which is a very effective tool to assess the operating performance. The payload-range diagram shape of hybrid-electric aircraft can vary as multiple combinations of the masses of batteries, fuel and payload to be transported on board are possible. The trade-off in the power supply strategies of the two power sources to reduce fuel consumption or to extend the maximum flight distance is described in detail. The results show that the hybrid-electric propulsion integrated on regional aircraft can lead to benefits in terms of environmental performance, through savings in direct fuel consumption, or alternatively in operating terms, through a significant extension of the operating envelope.
Mission Performance Analysis of Hybrid-Electric Regional Aircraft / Palaia, G.; Abu Salem, K.. - In: AEROSPACE. - ISSN 2226-4310. - 10:3(2023). [10.3390/aerospace10030246]
Mission Performance Analysis of Hybrid-Electric Regional Aircraft
Palaia G.;Abu Salem K.
2023
Abstract
This article discusses the mission performance of regional aircraft with hybrid-electric propulsion. The performance analyses are provided by mission simulations tools specifically developed for hybrid-electric aircraft flight dynamics. The hybrid-electric aircraft mission performance is assessed for the design point, identified by top level requirements, and for off-design missions, within the whole operating envelope. This work highlights that the operating features of hybrid-electric aircraft differ from those of aircraft of the same category with conventional thermal propulsion. This assessment is processed by properly analysing the aircraft payload-range diagram, which is a very effective tool to assess the operating performance. The payload-range diagram shape of hybrid-electric aircraft can vary as multiple combinations of the masses of batteries, fuel and payload to be transported on board are possible. The trade-off in the power supply strategies of the two power sources to reduce fuel consumption or to extend the maximum flight distance is described in detail. The results show that the hybrid-electric propulsion integrated on regional aircraft can lead to benefits in terms of environmental performance, through savings in direct fuel consumption, or alternatively in operating terms, through a significant extension of the operating envelope.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2997870
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo