This paper presents a broadband dielectric characterization method based on a Complex-Valued Deep Neural Network (CVNN) that allows the retrieval of permittivity and conductivity of dispersive lossy materials using ad-hoc setups. To validate the method, we numerically tested it employing a partially filled custom-made double-ridge waveguide setup, working from 0.95 to 4.2 GHz. Moreover, we include a feature importance analysis using agnostic explainable-AI (XAI) techniques. The results demonstrate the flexibility and the retrieval capabilities of the method, as well as the advantages and drawbacks in comparison with traditional techniques. We publicly release the dataset and codes to support further research.
Complex-Valued DNN for Broadband Dielectric Characterization of Dispersive Lossy Materials / Bandara, Nuwan; Gugliermino, Martina; Lumia, Mauro; Virone, Giuseppe; Vipiana, Francesca; Rodriguez-Duarte, David Orlando. - (2024), pp. 1-2. (Intervento presentato al convegno 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP) tenutosi a Cartagena (Col) nel 02 - 04 Dicembre 2024) [10.1109/lacap63752.2024.10876315].
Complex-Valued DNN for Broadband Dielectric Characterization of Dispersive Lossy Materials
Gugliermino, Martina;Lumia, Mauro;Virone, Giuseppe;Vipiana, Francesca;Rodriguez-Duarte, David Orlando
2024
Abstract
This paper presents a broadband dielectric characterization method based on a Complex-Valued Deep Neural Network (CVNN) that allows the retrieval of permittivity and conductivity of dispersive lossy materials using ad-hoc setups. To validate the method, we numerically tested it employing a partially filled custom-made double-ridge waveguide setup, working from 0.95 to 4.2 GHz. Moreover, we include a feature importance analysis using agnostic explainable-AI (XAI) techniques. The results demonstrate the flexibility and the retrieval capabilities of the method, as well as the advantages and drawbacks in comparison with traditional techniques. We publicly release the dataset and codes to support further research.File | Dimensione | Formato | |
---|---|---|---|
LACAP_2024_ML_DPs.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
252.57 kB
Formato
Adobe PDF
|
252.57 kB | Adobe PDF | Visualizza/Apri |
Complex-Valued_DNN_for_Broadband_Dielectric_Characterization_of_Dispersive_Lossy_Materials.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
308.38 kB
Formato
Adobe PDF
|
308.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2997712