This paper presents a broadband dielectric characterization method based on a Complex-Valued Deep Neural Network (CVNN) that allows the retrieval of permittivity and conductivity of dispersive lossy materials using ad-hoc setups. To validate the method, we numerically tested it employing a partially filled custom-made double-ridge waveguide setup, working from 0.95 to 4.2 GHz. Moreover, we include a feature importance analysis using agnostic explainable-AI (XAI) techniques. The results demonstrate the flexibility and the retrieval capabilities of the method, as well as the advantages and drawbacks in comparison with traditional techniques. We publicly release the dataset and codes to support further research.

Complex-Valued DNN for Broadband Dielectric Characterization of Dispersive Lossy Materials / Bandara, Nuwan; Gugliermino, Martina; Lumia, Mauro; Virone, Giuseppe; Vipiana, Francesca; Rodriguez-Duarte, David Orlando. - (2024), pp. 1-2. (Intervento presentato al convegno 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP) tenutosi a Cartagena (Col) nel 02 - 04 Dicembre 2024) [10.1109/lacap63752.2024.10876315].

Complex-Valued DNN for Broadband Dielectric Characterization of Dispersive Lossy Materials

Gugliermino, Martina;Lumia, Mauro;Virone, Giuseppe;Vipiana, Francesca;Rodriguez-Duarte, David Orlando
2024

Abstract

This paper presents a broadband dielectric characterization method based on a Complex-Valued Deep Neural Network (CVNN) that allows the retrieval of permittivity and conductivity of dispersive lossy materials using ad-hoc setups. To validate the method, we numerically tested it employing a partially filled custom-made double-ridge waveguide setup, working from 0.95 to 4.2 GHz. Moreover, we include a feature importance analysis using agnostic explainable-AI (XAI) techniques. The results demonstrate the flexibility and the retrieval capabilities of the method, as well as the advantages and drawbacks in comparison with traditional techniques. We publicly release the dataset and codes to support further research.
2024
979-8-3315-2758-7
File in questo prodotto:
File Dimensione Formato  
LACAP_2024_ML_DPs.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 252.57 kB
Formato Adobe PDF
252.57 kB Adobe PDF Visualizza/Apri
Complex-Valued_DNN_for_Broadband_Dielectric_Characterization_of_Dispersive_Lossy_Materials.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 308.38 kB
Formato Adobe PDF
308.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2997712