The categorisation of the electricity users is carried out by using statistical analysis of the available data over a period of analysis, together with clustering techniques to create appropriate groups of consumers. The grouping is affected by the selection of the macro-categories based on general user's attributes. This paper introduces the novel notion of internal categories for each macro-category. The main aspects referring to the selection of the user internal categories are analysed within an integrated framework that uses two-dimensional features (i.e., reference power and monthly energy) and a clustering algorithm with a consensus-based procedure for the final categorisation. The partitioning into internal categories enables reducing the number of users to be considered together for load profiling purposes. The results are presented considering real data obtained over one year for a large set of low-voltage three-phase electricity users.

Categorisation of Low-Voltage Three-Phase Electricity Users / Chicco, Gianfranco; Bonansinga, Daniele; Colella, Pietro. - ELETTRONICO. - (2022), pp. 1-6. (Intervento presentato al convegno 5th International Conference on Smart Energy Systems and Technologies, SEST 2022 tenutosi a Aristo Meeting Center Eindhoven, Vestdijk 30, nld nel 2022) [10.1109/sest53650.2022.9898442].

Categorisation of Low-Voltage Three-Phase Electricity Users

Chicco, Gianfranco;Colella, Pietro
2022

Abstract

The categorisation of the electricity users is carried out by using statistical analysis of the available data over a period of analysis, together with clustering techniques to create appropriate groups of consumers. The grouping is affected by the selection of the macro-categories based on general user's attributes. This paper introduces the novel notion of internal categories for each macro-category. The main aspects referring to the selection of the user internal categories are analysed within an integrated framework that uses two-dimensional features (i.e., reference power and monthly energy) and a clustering algorithm with a consensus-based procedure for the final categorisation. The partitioning into internal categories enables reducing the number of users to be considered together for load profiling purposes. The results are presented considering real data obtained over one year for a large set of low-voltage three-phase electricity users.
2022
978-1-6654-0557-7
File in questo prodotto:
File Dimensione Formato  
Chicco2022Categorisation.pdf

accesso riservato

Descrizione: main manuscript
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 860.6 kB
Formato Adobe PDF
860.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SEST2022_310_postprint.pdf

accesso aperto

Descrizione: main manuscript
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2997216