Integrating Artificial Intelligence (AI) into mobile and wearables offers numerous benefits at individual, societal, and environmental levels. Yet, it also spotlights concerns over emerging risks. Traditional assessments of risks and benefits have been sporadic, and often require costly expert analysis. We developed a semi-automatic method that leverages Large Language Models (LLMs) to identify AI uses in mobile and wearables, classify their risks based on the EU AI Act, and determine their benefits that align with globally recognized long-term sustainable development goals; a manual validation of our method by two experts in mobile and wearable technologies, a legal and compliance expert, and a cohort of nine individuals with legal backgrounds who were recruited from Prolific, confirmed its accuracy to be over 85%. We uncovered that specific applications of mobile computing hold significant potential in improving well-being, safety, and social equality. However, these promising uses are linked to risks involving sensitive data, vulnerable groups, and automated decision-making. To avoid rejecting these risky yet impactful mobile and wearable uses, we propose a risk assessment checklist for the Mobile HCI community.
Good Intentions, Risky Inventions: A Method for Assessing the Risks and Benefits of AI in Mobile and Wearable Uses / Constantinides, Marios; Bogucka, Edyta Paulina; Scepanovic, Sanja; Quercia, Daniele. - In: PROCEEDINGS OF THE ACM ON HUMAN-COMPUTER INTERACTION. - ISSN 2573-0142. - 8:(2024), pp. 1-28. (Intervento presentato al convegno ACM MobileHCI) [10.1145/3676507].
Good Intentions, Risky Inventions: A Method for Assessing the Risks and Benefits of AI in Mobile and Wearable Uses
Quercia, Daniele
2024
Abstract
Integrating Artificial Intelligence (AI) into mobile and wearables offers numerous benefits at individual, societal, and environmental levels. Yet, it also spotlights concerns over emerging risks. Traditional assessments of risks and benefits have been sporadic, and often require costly expert analysis. We developed a semi-automatic method that leverages Large Language Models (LLMs) to identify AI uses in mobile and wearables, classify their risks based on the EU AI Act, and determine their benefits that align with globally recognized long-term sustainable development goals; a manual validation of our method by two experts in mobile and wearable technologies, a legal and compliance expert, and a cohort of nine individuals with legal backgrounds who were recruited from Prolific, confirmed its accuracy to be over 85%. We uncovered that specific applications of mobile computing hold significant potential in improving well-being, safety, and social equality. However, these promising uses are linked to risks involving sensitive data, vulnerable groups, and automated decision-making. To avoid rejecting these risky yet impactful mobile and wearable uses, we propose a risk assessment checklist for the Mobile HCI community.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2996105
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo