Responsible AI design is increasingly seen as an imperative by both AI developers and AI compliance experts. One of the key tasks is envisioning AI technology uses and risks. Recent studies on the model and data cards reveal that AI practitioners struggle with this task due to its inherently challenging nature. Here, we demonstrate that leveraging a Large Language Model (LLM) can support AI practitioners in this task by enabling reflexivity, brainstorming, and deliberation, especially in the early design stages of the AI development process. We developed an LLM framework, ExploreGen, which generates realistic and varied uses of AI technology, including those overlooked by research, and classifies their risk level based on the EU AI Act regulation. We evaluated our framework using the case of Facial Recognition and Analysis technology in nine user studies with 25 AI practitioners. Our findings show that ExploreGen is helpful to both developers and compliance experts. They rated the uses as realistic and their risk classification as accurate (94.5%). Moreover, while unfamiliar with many of the uses, they rated them as having high adoption potential and transformational impact.

ExploreGen: Large Language Models for Envisioning the Uses and Risks of AI Technologies / Herdel, Viviane; Šćepanović, Sanja; Bogucka, Edyta; Quercia, Daniele. - 7:(2024), pp. 584-596. (Intervento presentato al convegno Seventh AAAI/ACM Conference on AI, Ethics, and Society (AIES-24) tenutosi a San José, CA (USA) nel October 21–23, 2024) [10.1609/aies.v7i1.31660].

ExploreGen: Large Language Models for Envisioning the Uses and Risks of AI Technologies

Quercia, Daniele
2024

Abstract

Responsible AI design is increasingly seen as an imperative by both AI developers and AI compliance experts. One of the key tasks is envisioning AI technology uses and risks. Recent studies on the model and data cards reveal that AI practitioners struggle with this task due to its inherently challenging nature. Here, we demonstrate that leveraging a Large Language Model (LLM) can support AI practitioners in this task by enabling reflexivity, brainstorming, and deliberation, especially in the early design stages of the AI development process. We developed an LLM framework, ExploreGen, which generates realistic and varied uses of AI technology, including those overlooked by research, and classifies their risk level based on the EU AI Act regulation. We evaluated our framework using the case of Facial Recognition and Analysis technology in nine user studies with 25 AI practitioners. Our findings show that ExploreGen is helpful to both developers and compliance experts. They rated the uses as realistic and their risk classification as accurate (94.5%). Moreover, while unfamiliar with many of the uses, they rated them as having high adoption potential and transformational impact.
2024
978-1-57735-892-3
File in questo prodotto:
File Dimensione Formato  
exploregen24-5.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.02 MB
Formato Adobe PDF
5.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
31660-Article Text-35724-1-2-20241016.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2996101