We propose a physics-informed machine learning method to predict the time average of a chaotic attractor. The method is based on the hybrid echo state network (hESN). We assume that the system is ergodic, so the time average is equal to the ergodic average. Compared to conventional echo state networks (ESN) (purely data-driven), the hESN uses additional information from an incomplete, or imperfect, physical model. We evaluate the performance of the hESN and compare it to that of an ESN. This approach is demonstrated on a chaotic time-delayed thermoacoustic system, where the inclusion of a physical model significantly improves the accuracy of the prediction, reducing the relative error from 48% to 1%. This improvement is obtained at the low extra cost of solving a small number of ordinary differential equations that contain physical information. This framework shows the potential of using machine learning techniques combined with prior physical knowledge to improve the prediction of time-averaged quantities in chaotic systems.

Learning Ergodic Averages in Chaotic Systems / Huhn, Francisco; Magri, Luca. - 12142 - 6:(2020), pp. 124-132. (Intervento presentato al convegno Computational Science – ICCS 2020 : 20th International Conference tenutosi a Amsterdam (Ned) nel June 3–5, 2020) [10.1007/978-3-030-50433-5_10].

Learning Ergodic Averages in Chaotic Systems

Magri, Luca
2020

Abstract

We propose a physics-informed machine learning method to predict the time average of a chaotic attractor. The method is based on the hybrid echo state network (hESN). We assume that the system is ergodic, so the time average is equal to the ergodic average. Compared to conventional echo state networks (ESN) (purely data-driven), the hESN uses additional information from an incomplete, or imperfect, physical model. We evaluate the performance of the hESN and compare it to that of an ESN. This approach is demonstrated on a chaotic time-delayed thermoacoustic system, where the inclusion of a physical model significantly improves the accuracy of the prediction, reducing the relative error from 48% to 1%. This improvement is obtained at the low extra cost of solving a small number of ordinary differential equations that contain physical information. This framework shows the potential of using machine learning techniques combined with prior physical knowledge to improve the prediction of time-averaged quantities in chaotic systems.
2020
978-3-030-50432-8
File in questo prodotto:
File Dimensione Formato  
978-3-030-50433-5_10.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 643.23 kB
Formato Adobe PDF
643.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995905