Non-conventional machine are nowadays plays a vital role in manufacturing complex shaped products and to produce the product with high accuracy the electrochemical machining is widely used to machine complicated shapes for electrically conducting difficult-to-machine materials such as super alloys, Ti-alloys, alloy steel, tool steel, stainless steel, etc. such titanium-based alloys are in common use for aero engine components such as blades and blisks (blade integrated disks). Therefore, in this present work to investigate the influence of some predominant electrochemical process parameters such as applied voltage, electrolyte concentration, Micro-tool feed rate and duty cycle on the metal removal rate , overcut and surface roughness to fulfill the effective utilization of electrochemical machining of Pure-titanium. The purpose of this study is to investigate the influence of process parameters on machining characteristics and optimize the combination of those parameters using Taguchi-grey relational analysis. From this result, it is observed that process parameters have significant role in Electrochemical Micromachining process and the optimization values has been found using proposed multi-response methodology.

Experimental Investigation of Electrochemical Micromachaning Process Parameters on Pure-Titanium Using Taguchi-Grey Relational Analysis / Thangamani, Geethapriyan; Kalaichelvan, K.. - 852:(2016), pp. 198-204. (Intervento presentato al convegno International Conference on Mechanical Engineering Design (ICMED) tenutosi a Chennai (IND) nel April 25-26, 2016) [10.4028/www.scientific.net/amm.852.198].

Experimental Investigation of Electrochemical Micromachaning Process Parameters on Pure-Titanium Using Taguchi-Grey Relational Analysis

Geethapriyan, Thangamani.;
2016

Abstract

Non-conventional machine are nowadays plays a vital role in manufacturing complex shaped products and to produce the product with high accuracy the electrochemical machining is widely used to machine complicated shapes for electrically conducting difficult-to-machine materials such as super alloys, Ti-alloys, alloy steel, tool steel, stainless steel, etc. such titanium-based alloys are in common use for aero engine components such as blades and blisks (blade integrated disks). Therefore, in this present work to investigate the influence of some predominant electrochemical process parameters such as applied voltage, electrolyte concentration, Micro-tool feed rate and duty cycle on the metal removal rate , overcut and surface roughness to fulfill the effective utilization of electrochemical machining of Pure-titanium. The purpose of this study is to investigate the influence of process parameters on machining characteristics and optimize the combination of those parameters using Taguchi-grey relational analysis. From this result, it is observed that process parameters have significant role in Electrochemical Micromachining process and the optimization values has been found using proposed multi-response methodology.
2016
File in questo prodotto:
File Dimensione Formato  
28.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 766.16 kB
Formato Adobe PDF
766.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995790