In order to improve the performance of the large divergence angle mid-infrared source in gas sensing, this paper aims at developing a methane (CH4) sensor with non-dispersive infrared (NDIR) technology using a compact pentahedron gas-cell. A paraboloid concentrator, two biconvex lenses and five planar mirrors were used to set up the pentahedron structure. The gas cell is endowed with a 170 mm optical path length with a volume of 19.8 mL. The mathematical model of the cross-section and the three-dimension spiral structure of the pentahedron gas-cell were established. The gas-cell was integrated with a mid-infrared light source and a detector as the optical part of the sensor. Concerning the electrical part, a STM32F429 was employed as a microcontroller to generate the driving signal for the IR source, and the signal from the detector was sampled by an analog-to-digital converter. A static volumetric method was employed for the experimental setup, and 20 different concentration CH4 samples were prepared to study the sensor’s evaluation, which revealed a 1σ detection limit of 2.96 parts-per-million (ppm) with a 43 s averaging time.
A NDIR mid-infrared methane sensor with a compact pentahedron gas-cell / Ye, W.; Tu, Z.; Xiao, X; Simeone, A.; Yan, J.; Wu, T.; Wu, F.; Zheng, C.; Tittel, F. K.. - In: SENSORS. - ISSN 1424-8220. - (2020). [10.3390/s20195461]
A NDIR mid-infrared methane sensor with a compact pentahedron gas-cell
Simeone A.;
2020
Abstract
In order to improve the performance of the large divergence angle mid-infrared source in gas sensing, this paper aims at developing a methane (CH4) sensor with non-dispersive infrared (NDIR) technology using a compact pentahedron gas-cell. A paraboloid concentrator, two biconvex lenses and five planar mirrors were used to set up the pentahedron structure. The gas cell is endowed with a 170 mm optical path length with a volume of 19.8 mL. The mathematical model of the cross-section and the three-dimension spiral structure of the pentahedron gas-cell were established. The gas-cell was integrated with a mid-infrared light source and a detector as the optical part of the sensor. Concerning the electrical part, a STM32F429 was employed as a microcontroller to generate the driving signal for the IR source, and the signal from the detector was sampled by an analog-to-digital converter. A static volumetric method was employed for the experimental setup, and 20 different concentration CH4 samples were prepared to study the sensor’s evaluation, which revealed a 1σ detection limit of 2.96 parts-per-million (ppm) with a 43 s averaging time.File | Dimensione | Formato | |
---|---|---|---|
sensors-20-05461.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.42 MB
Formato
Adobe PDF
|
4.42 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995708