We introduce and study a notion of Castelnuovo–Mumford regularity suitable for rational normal scroll surfaces. In this setting we prove analogs of some classical properties. We prove splitting criteria for coherent sheaves and a characterization of Ulrich bundles. Finally we study logarithmic bundles associated to arrangements of lines and rational curves.

Castelnuovo–Mumford regularity and splitting criteria for logarithmic bundles over rational normal scroll surfaces / Di Gennaro, R.; Malaspina, F.. - In: INDAGATIONES MATHEMATICAE. - ISSN 0019-3577. - (2024), pp. 1-17. [10.1016/j.indag.2024.10.002]

Castelnuovo–Mumford regularity and splitting criteria for logarithmic bundles over rational normal scroll surfaces

R. Di Gennaro;F. Malaspina
2024

Abstract

We introduce and study a notion of Castelnuovo–Mumford regularity suitable for rational normal scroll surfaces. In this setting we prove analogs of some classical properties. We prove splitting criteria for coherent sheaves and a characterization of Ulrich bundles. Finally we study logarithmic bundles associated to arrangements of lines and rational curves.
File in questo prodotto:
File Dimensione Formato  
RegScrollSurf.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 389.6 kB
Formato Adobe PDF
389.6 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995430