We introduce and study a notion of Castelnuovo–Mumford regularity suitable for rational normal scroll surfaces. In this setting we prove analogs of some classical properties. We prove splitting criteria for coherent sheaves and a characterization of Ulrich bundles. Finally we study logarithmic bundles associated to arrangements of lines and rational curves.
Castelnuovo–Mumford regularity and splitting criteria for logarithmic bundles over rational normal scroll surfaces / Di Gennaro, R.; Malaspina, F.. - In: INDAGATIONES MATHEMATICAE. - ISSN 0019-3577. - (2024), pp. 1-17. [10.1016/j.indag.2024.10.002]
Castelnuovo–Mumford regularity and splitting criteria for logarithmic bundles over rational normal scroll surfaces
R. Di Gennaro;F. Malaspina
2024
Abstract
We introduce and study a notion of Castelnuovo–Mumford regularity suitable for rational normal scroll surfaces. In this setting we prove analogs of some classical properties. We prove splitting criteria for coherent sheaves and a characterization of Ulrich bundles. Finally we study logarithmic bundles associated to arrangements of lines and rational curves.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
RegScrollSurf.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
389.6 kB
Formato
Adobe PDF
|
389.6 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2995430