The “architectural suitability” of scaffolds for bone tissue engineering is commonly evaluated by assessing the pore volume and the mean pore size (or pore size distribution, if possible) and comparing these values with the reference ranges of human cancellous bone. However, these two parameters cannot precisely describe the complex architecture of bone scaffolds and just provide a preliminary comparative criterion. Permeability is suggested as a more comprehensive and significant parameter to characterize scaffold architecture and mass transport capability, being also related to bone in-growth and, thus, functional properties. However, assessing the permeability of bioactive ceramics and glass scaffolds is a complex task from both methodological and experimental viewpoints. After providing an overview of the fundamentals about porosity in scaffolds, this review explores the different experimental and numerical approaches used to determine the permeability of porous bioceramics, describing the methodologies used (pump-based, gravity-based, acoustic and computational methods) and highlighting advantages and limitations to overcome (e.g., reliability issues and need for better standardization of the experimental procedures).

Determining the Permeability of Porous Bioceramic Scaffolds: Significance, Overview of Current Methods and Challenges Ahead / Gabrieli, R.; Schiavi, A.; Baino, F.. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 17:(2024). [10.3390/ma17225522]

Determining the Permeability of Porous Bioceramic Scaffolds: Significance, Overview of Current Methods and Challenges Ahead

Gabrieli R.;Schiavi A.;Baino F.
2024

Abstract

The “architectural suitability” of scaffolds for bone tissue engineering is commonly evaluated by assessing the pore volume and the mean pore size (or pore size distribution, if possible) and comparing these values with the reference ranges of human cancellous bone. However, these two parameters cannot precisely describe the complex architecture of bone scaffolds and just provide a preliminary comparative criterion. Permeability is suggested as a more comprehensive and significant parameter to characterize scaffold architecture and mass transport capability, being also related to bone in-growth and, thus, functional properties. However, assessing the permeability of bioactive ceramics and glass scaffolds is a complex task from both methodological and experimental viewpoints. After providing an overview of the fundamentals about porosity in scaffolds, this review explores the different experimental and numerical approaches used to determine the permeability of porous bioceramics, describing the methodologies used (pump-based, gravity-based, acoustic and computational methods) and highlighting advantages and limitations to overcome (e.g., reliability issues and need for better standardization of the experimental procedures).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo