Data centers require high-performance and efficient networking for fast and reliable communication between applications. TCP/IP-based networking still plays a dominant role in data center networking to support a wide range of Layer-4 and Layer-7 applications, such as middleboxes and cloud-based microservices. However, traditional kernel-based TCP/IP stacks face performance challenges due to overheads such as context switching, interrupts, and copying. We present Z-stack, a high-performance userspace TCP/IP stack with a zero-copy design. Utilizing DPDK's Poll Mode Driver, Z-stack bypasses the kernel and moves packets between the NIC and the protocol stack in userspace, eliminating the overhead associated with kernel-based processing. Z-stack em-ploys polling-based packet processing that improves performance under high loads, and eliminates receive livelocks compared to interrupt-driven packet processing. With its zero-copy socket design, Z-stack eliminates copies when moving data between the user application and the protocol stack, which further minimizes latency and improves throughput. In addition, Z-stack seamlessly integrates with shared memory processing within the node, eliminating duplicate protocol processing and serializationldese-rialization overheads for intra-node communication. Z-stack uses F-stack as the starting point which integrates the proven TCP/IP stack from FreeBSD, providing a versatile solution for a variety of cloud use cases and improving performance of data center networking.
Z-Stack: A High-Performance DPDK-Based Zero-Copy TCP/IP Protocol Stack / Narappa, Anvaya B.; Parola, Federico; Qi, Shixiong; Ramakrishnan, K. K.. - ELETTRONICO. - (2024), pp. 100-105. (Intervento presentato al convegno 30th IEEE International Symposium on Local and Metropolitan Area Networks, LANMAN 2024 tenutosi a Boston, MA (USA) nel 10–11 July 2024) [10.1109/lanman61958.2024.10621881].
Z-Stack: A High-Performance DPDK-Based Zero-Copy TCP/IP Protocol Stack
Parola, Federico;
2024
Abstract
Data centers require high-performance and efficient networking for fast and reliable communication between applications. TCP/IP-based networking still plays a dominant role in data center networking to support a wide range of Layer-4 and Layer-7 applications, such as middleboxes and cloud-based microservices. However, traditional kernel-based TCP/IP stacks face performance challenges due to overheads such as context switching, interrupts, and copying. We present Z-stack, a high-performance userspace TCP/IP stack with a zero-copy design. Utilizing DPDK's Poll Mode Driver, Z-stack bypasses the kernel and moves packets between the NIC and the protocol stack in userspace, eliminating the overhead associated with kernel-based processing. Z-stack em-ploys polling-based packet processing that improves performance under high loads, and eliminates receive livelocks compared to interrupt-driven packet processing. With its zero-copy socket design, Z-stack eliminates copies when moving data between the user application and the protocol stack, which further minimizes latency and improves throughput. In addition, Z-stack seamlessly integrates with shared memory processing within the node, eliminating duplicate protocol processing and serializationldese-rialization overheads for intra-node communication. Z-stack uses F-stack as the starting point which integrates the proven TCP/IP stack from FreeBSD, providing a versatile solution for a variety of cloud use cases and improving performance of data center networking.| File | Dimensione | Formato | |
|---|---|---|---|
| author_z-stack.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										368.11 kB
									 
										Formato
										Adobe PDF
									 | 368.11 kB | Adobe PDF | Visualizza/Apri | 
| z-stack.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										442.95 kB
									 
										Formato
										Adobe PDF
									 | 442.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995319
			
		
	
	
	
			      	