Marine mammals vocalization pose challenges in understanding animal communication due to signal diversity and environmental factors. Researchers leverage machine learning (ML) to characterize vocalizations, monitor movements, and enhance comprehension of vocalizations. The Watkins Marine Mammal Sound Database, a crucial resource, spans decades but poses challenges for ML classification. Addressing interpretability issues in deep learning, we employ the Wavelet Scattering Transform (WST), offering invariance and stability. WST’s application to this dataset contributes to understanding complex natural sounds. Our study presents a statistical analysis using WST, emphasizing class dispersion, demonstrating high accuracy compared to existing preprocessing methods.

Wavelet Scattering Operators for Multiscale Processes: The Case Study of Marine Mammal Vocalizations / Licciardi, Alessandro; Carbone, Davide; Rondoni, Lamberto. - STAMPA. - 3:(2024), pp. 173-191. (Intervento presentato al convegno 2nd International Conference on Nonlinear Dynamics and Applications tenutosi a Gangtok (India)) [10.1007/978-3-031-69146-1_15].

Wavelet Scattering Operators for Multiscale Processes: The Case Study of Marine Mammal Vocalizations

Alessandro Licciardi;Davide Carbone;Lamberto Rondoni
2024

Abstract

Marine mammals vocalization pose challenges in understanding animal communication due to signal diversity and environmental factors. Researchers leverage machine learning (ML) to characterize vocalizations, monitor movements, and enhance comprehension of vocalizations. The Watkins Marine Mammal Sound Database, a crucial resource, spans decades but poses challenges for ML classification. Addressing interpretability issues in deep learning, we employ the Wavelet Scattering Transform (WST), offering invariance and stability. WST’s application to this dataset contributes to understanding complex natural sounds. Our study presents a statistical analysis using WST, emphasizing class dispersion, demonstrating high accuracy compared to existing preprocessing methods.
2024
9783031691454
9783031691461
File in questo prodotto:
File Dimensione Formato  
icnda_24_id340_wstformammals.pdf

embargo fino al 10/12/2025

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995142