Generative diffusion models are gaining attention as a promising solution for synthetic data generation, offering a distinct advantage over traditional statistical methods and basic generative models. This work focuses on evaluating the effectiveness of such models in the context of estimating Lightpath Quality of Transmission (QoT) in optical networks, especially when real data availability is strongly limited. Numerical results demonstrate that leveraging diffusion models for data augmentation can significantly improve QoT classification accuracy and F1-score when available data are limited to a few dozens of samples. These findings highlight the potential of generative diffusion models in improving data-driven tasks for optical network management under sparse data conditions.

Synthetic Data Generation using Diffusion Models for ML-based Lightpath Quality of Transmission Estimation Under Extreme Data Scarcity / Andreoletti, Davide; Rottondi, Cristina; Ayoub, Omran; Bianco, Andrea. - (2024). (Intervento presentato al convegno 24th International Conference on Transparent Optical Networks, ICTON 2024 tenutosi a Bari (IT) nel 14-18 July 2024) [10.1109/icton62926.2024.10647643].

Synthetic Data Generation using Diffusion Models for ML-based Lightpath Quality of Transmission Estimation Under Extreme Data Scarcity

Rottondi, Cristina;Bianco, Andrea
2024

Abstract

Generative diffusion models are gaining attention as a promising solution for synthetic data generation, offering a distinct advantage over traditional statistical methods and basic generative models. This work focuses on evaluating the effectiveness of such models in the context of estimating Lightpath Quality of Transmission (QoT) in optical networks, especially when real data availability is strongly limited. Numerical results demonstrate that leveraging diffusion models for data augmentation can significantly improve QoT classification accuracy and F1-score when available data are limited to a few dozens of samples. These findings highlight the potential of generative diffusion models in improving data-driven tasks for optical network management under sparse data conditions.
2024
979-8-3503-7732-3
File in questo prodotto:
File Dimensione Formato  
Rottondi_071224.pdf

accesso riservato

Descrizione: paper versione accettata
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 318.91 kB
Formato Adobe PDF
318.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Data Augmentation Using Diffusion Models for Lightpath Quality-of-Transmission Estimation.docx.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 314.63 kB
Formato Adobe PDF
314.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995130