We propose Echo State Networks (ESNs) to predict the statistics of extreme events in a turbulent flow. We train the ESNs on small datasets that lack information about the extreme events. We asses whether the networks are able to extrapolate from the small imperfect datasets and predict the heavy-tail statistics that describe the events. We find that the networks correctly predict the events and improve the statistics of the system with respect to the training data in almost all cases analysed. This opens up new possibilities for the statistical prediction of extreme events in turbulence.
Statistical Prediction of Extreme Events from Small Datasets / Racca, Alberto; Magri, Luca. - 13352 - 3:(2022), pp. 707-713. (Intervento presentato al convegno Computational Science – ICCS 2022 : 22th International Conference tenutosi a London (UK) nel June 21–23, 2022) [10.1007/978-3-031-08757-8_58].
Statistical Prediction of Extreme Events from Small Datasets
Magri, Luca
2022
Abstract
We propose Echo State Networks (ESNs) to predict the statistics of extreme events in a turbulent flow. We train the ESNs on small datasets that lack information about the extreme events. We asses whether the networks are able to extrapolate from the small imperfect datasets and predict the heavy-tail statistics that describe the events. We find that the networks correctly predict the events and improve the statistics of the system with respect to the training data in almost all cases analysed. This opens up new possibilities for the statistical prediction of extreme events in turbulence.File | Dimensione | Formato | |
---|---|---|---|
Computational Science – ICCS 2022.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2201.08294v2.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
4.13 MB
Formato
Adobe PDF
|
4.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995103