Systems with time-delayed chaotic dynamics are common in nature, from control theory to aeronautical propulsion. The overarching objective of this paper is to compute the stability properties of a chaotic dynamical system, which is time-delayed. The stability analysis is based only on data. We employ the echo state network (ESN), a type of recurrent neural network, and train it on timeseries of a prototypical time-delayed nonlinear thermoacoustic system. By running the trained ESN autonomously, we show that it can reproduce (i) the long-term statistics of the thermoacoustic system’s variables, (ii) the physical portion of the Lyapunov spectrum, and (iii) the statistics of the finite-time Lyapunov exponents. This work opens up the possibility to infer stability properties of time-delayed systems from experimental observations.
Data-Driven Stability Analysis of a Chaotic Time-Delayed System / Margazoglou, Georgios; Magri, Luca. - 14076 - 4:(2023), pp. 406-413. (Intervento presentato al convegno 23rd International Conference on Computational Science, ICCS 2023 tenutosi a Prague, (Czech Republic) nel July 3–5, 2023) [10.1007/978-3-031-36027-5_31].
Data-Driven Stability Analysis of a Chaotic Time-Delayed System
Magri, Luca
2023
Abstract
Systems with time-delayed chaotic dynamics are common in nature, from control theory to aeronautical propulsion. The overarching objective of this paper is to compute the stability properties of a chaotic dynamical system, which is time-delayed. The stability analysis is based only on data. We employ the echo state network (ESN), a type of recurrent neural network, and train it on timeseries of a prototypical time-delayed nonlinear thermoacoustic system. By running the trained ESN autonomously, we show that it can reproduce (i) the long-term statistics of the thermoacoustic system’s variables, (ii) the physical portion of the Lyapunov spectrum, and (iii) the statistics of the finite-time Lyapunov exponents. This work opens up the possibility to infer stability properties of time-delayed systems from experimental observations.File | Dimensione | Formato | |
---|---|---|---|
Computational Science – ICCS 2023.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
298.58 kB
Formato
Adobe PDF
|
298.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995099