This study presents a techno-economic assessment of dynamic wireless power transfer for long-haul freight transport, focusing on the fleet operator’s perspective. In particular, we compared three different powertrain technologies: a conventional powertrain and a battery-electric with or without a dynamic charger installed. For all three technologies, we developed a cost model to assess the total cost of ownership for a fleet operator using different scenarios. Notably, dedicated cost models were devised to estimate energy carrier costs and costs related to time loss incurred by fleet operators due to extended delivery times of electric trucks compared to conventional ones. The novelties in the cost model are twofold. First, dedicated cost models have been devised to estimate the costs related to the energy carriers (including the cost of infrastructure) and to the time loss incurred by fleet operators due to the extended delivery times of electric trucks compared to conventional ones. Second, the energy consumption by source and travel time were derived from an ad-hoc developed simulation approach models longitudinal dynamics of the case-study as well as the powertrain’s performance on the basis of experimentally derived look-up tables provided by manufacturers as well as by previous research projects. The simulation results provided by this model are instrumental to our enhanced cost model as it provides the required inputs and it allowed us to tailor the results to a specific delivery mission. Our results provide valuable insights for fleet operators considering the adoption of zero-emission trucks and to policy-makers and other infrastructure stakeholders regarding the conditions required for the cost-effectiveness of electric road systems.

Assessing the viability of dynamic wireless power transfer in long-haul freight transport: A techno-economic analysis from fleet operators’ standpoint / Costantino, Trentalessandro; Miretti, Federico; Spessa, Ezio. - In: APPLIED ENERGY. - ISSN 0306-2619. - ELETTRONICO. - 379:(2025). [10.1016/j.apenergy.2024.124839]

Assessing the viability of dynamic wireless power transfer in long-haul freight transport: A techno-economic analysis from fleet operators’ standpoint

Trentalessandro Costantino;Federico Miretti;Ezio Spessa
2025

Abstract

This study presents a techno-economic assessment of dynamic wireless power transfer for long-haul freight transport, focusing on the fleet operator’s perspective. In particular, we compared three different powertrain technologies: a conventional powertrain and a battery-electric with or without a dynamic charger installed. For all three technologies, we developed a cost model to assess the total cost of ownership for a fleet operator using different scenarios. Notably, dedicated cost models were devised to estimate energy carrier costs and costs related to time loss incurred by fleet operators due to extended delivery times of electric trucks compared to conventional ones. The novelties in the cost model are twofold. First, dedicated cost models have been devised to estimate the costs related to the energy carriers (including the cost of infrastructure) and to the time loss incurred by fleet operators due to the extended delivery times of electric trucks compared to conventional ones. Second, the energy consumption by source and travel time were derived from an ad-hoc developed simulation approach models longitudinal dynamics of the case-study as well as the powertrain’s performance on the basis of experimentally derived look-up tables provided by manufacturers as well as by previous research projects. The simulation results provided by this model are instrumental to our enhanced cost model as it provides the required inputs and it allowed us to tailor the results to a specific delivery mission. Our results provide valuable insights for fleet operators considering the adoption of zero-emission trucks and to policy-makers and other infrastructure stakeholders regarding the conditions required for the cost-effectiveness of electric road systems.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0306261924022220-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2994747