The family of the multivariate conditional hazard rate functions often reveals to be a convenient tool to describe the joint probability distribution of a vector of non-negative random variables (lifetimes) in the absolutely continuous case. Such a tool can have in particular an important role in the study of the behavior of the minima among inter-dependent lifetimes. In this paper we introduce the concept of reversed multivariate conditional hazard rate functions, which extends the one-dimensional notion of reversed hazard rate of a single non-negative random variable. Several basic properties of this concept are proven. In particular, we point out a related role in the study of the behavior of the maximum value among inter-dependent lifetimes. In different applied fields, and in particular in the reliability literature, a remarkable class of dependence models for vectors of lifetimes is related with the load-sharing condition, which can be defined in terms of the multivariate conditional hazard rate functions. In the paper we define the class of reversedload-sharing models, which can be seen as natural extensions to the multivariate case of the univariate inverse exponential distributions. We analyze basic properties of such a class of dependence models. In particular we show a result related to the study of the inactivity time of a coherent system when the joint distribution of the components’ lifetimes is a reversed load-sharing model.
Multivariate Reversed Hazard Rates and Inactivity Times of Systems / Buono, F.; De Santis, E.; Longobardi, M.; Spizzichino, F.. - In: METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY. - ISSN 1387-5841. - 24:3(2022), pp. 1987-2008. [10.1007/s11009-021-09905-2]
Multivariate Reversed Hazard Rates and Inactivity Times of Systems
Buono F.;
2022
Abstract
The family of the multivariate conditional hazard rate functions often reveals to be a convenient tool to describe the joint probability distribution of a vector of non-negative random variables (lifetimes) in the absolutely continuous case. Such a tool can have in particular an important role in the study of the behavior of the minima among inter-dependent lifetimes. In this paper we introduce the concept of reversed multivariate conditional hazard rate functions, which extends the one-dimensional notion of reversed hazard rate of a single non-negative random variable. Several basic properties of this concept are proven. In particular, we point out a related role in the study of the behavior of the maximum value among inter-dependent lifetimes. In different applied fields, and in particular in the reliability literature, a remarkable class of dependence models for vectors of lifetimes is related with the load-sharing condition, which can be defined in terms of the multivariate conditional hazard rate functions. In the paper we define the class of reversedload-sharing models, which can be seen as natural extensions to the multivariate case of the univariate inverse exponential distributions. We analyze basic properties of such a class of dependence models. In particular we show a result related to the study of the inactivity time of a coherent system when the joint distribution of the components’ lifetimes is a reversed load-sharing model.File | Dimensione | Formato | |
---|---|---|---|
Buono2021_Article_MultivariateReversedHazardRate.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2994643