We present a characterization of 2-dimensional Lorentzian manifolds with con-stant Ricci scalar curvature. It is well known that every 2-dimensional Lorentzian manifolds is conformally flat, so we rewrite the Ricci scalar curvature in terms of the conformal factor and we study the solutions of the corresponding differential equations. Several remarkable examples are provided.

NOTES ON A CONFORMAL CHARACTERIZATION OF 2-DIMENSIONAL LORENTZIAN MANIFOLDS WITH CONSTANT RICCI SCALAR CURVATURE / Cangiotti, N; Sensi, M. - In: SCIENTIFIC BULLETIN - "POLITEHNICA" UNIVERSITY OF BUCHAREST. SERIES A, APPLIED MATHEMATICS AND PHYSICS. - ISSN 1223-7027. - 83:2(2021), pp. 129-136.

NOTES ON A CONFORMAL CHARACTERIZATION OF 2-DIMENSIONAL LORENTZIAN MANIFOLDS WITH CONSTANT RICCI SCALAR CURVATURE

Sensi, M
2021

Abstract

We present a characterization of 2-dimensional Lorentzian manifolds with con-stant Ricci scalar curvature. It is well known that every 2-dimensional Lorentzian manifolds is conformally flat, so we rewrite the Ricci scalar curvature in terms of the conformal factor and we study the solutions of the corresponding differential equations. Several remarkable examples are provided.
2021
File in questo prodotto:
File Dimensione Formato  
Conformal_Characterization.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 564.93 kB
Formato Adobe PDF
564.93 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2993452