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NOTES ON A CONFORMAL CHARACTERIZATION OF
2-DIMENSIONAL LORENTZIAN MANIFOLDS WITH

CONSTANT RICCI SCALAR CURVATURE

Nicolò Cangiotti1 and Mattia Sensi2

Abstract We present a characterization of 2-dimensional Lorentzian man-
ifolds with constant Ricci scalar curvature. It is well known that every 2-
dimensional Lorentzian manifolds is conformally flat, so we rewrite the Ricci
scalar curvature in terms of the conformal factor and we study the solutions of
the corresponding differential equations. Several remarkable examples are pro-
vided.

Keywords: Lorentzian manifolds, 2-dimensional manifolds, Minkowski space,
conformal factor, Ricci scalar curvature.
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1. Introduction

Pseudo-Riemannian manifolds have historically been of interdisciplinary in-
terest, and they have been extensively studied in many fields, from differential
geometry to mathematical physics. In particular, there is a class which, for many
reasons, has assumed an importance comparable to the one of Riemannian mani-
folds. It is indeed well known that, in the general theory of relativity, the spacetime
has historically been modeled as a 4-dimensional Lorentzian manifold. Lorentzian
manifolds represent a very interesting case study, which has been thoroughly in-
vestigated in mathematics [1, 2, 5] as much as in physics [9, 14, 18]. And, as it
often happens in geometry, there are many properties which depend completely
on the dimension of the manifold.

This paper fits into the body of works that propose an analysis of the 2-
dimensional Lorentzian geometry (see, for instance, [4, 6, 8, 13, 17, 19]). Our
idea is the following: starting from the fact that every 2-dimensional Lorentzian
manifold is conformally flat, we show a very simple way to construct Lorentzian
manifolds with constant Ricci scalar curvature by deriving different expressions of
the conformal factor. In particular, we provide explicit forms for the conformal
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factor, which is a solution of a classical partial differential equations. In the same
way, we propose also several examples, some that recover very familiar Lorentzian
manifolds, whereas other are provided to illustrate the potential of our method.

The paper is organized as follows. In Section 2, we recall some definitions
and a classical result regarding 2-dimensional Lorentzian manifolds. Section 3 is
devoted to illustrate a way to construct Lorentzian manifolds starting from the
conformal factor. Finally, we conclude with Section 4 by summarizing the ideas
exhibited and by presenting possible further developments.

2. Definitions and basic concepts

In this section, we recall some basic definitions and concepts regarding Lo-
rentzian manifolds; we remark similarities with the Riemannian case. Moreover,
we state a fundamental theorem on the conformal structure of the 2-dimensional
Loretzian manifolds.

Definition 2.1. A pseudo-Riemannian manifold M is a differentiable manifold,
equipped with an everywhere non-degenerate metric g. We denote a manifold pro-
vided with a specific metric with the couple (M, g).

It is well known that, by Sylvester’s law of inertia, one can identify the metric
with its signature [12]. We restrict our study to a particular signature, which, as
mentioned above, is very relevant in many physical context, especially in the field
of the general theory of relativity.

Definition 2.2. A Lorentzian manifold is a pseudo-Riemannian manifold M,
equipped with a metric g with signature (1, n − 1), where n is the dimension of
M.

For our purpose, we shall consider the 2-dimensional Lorentzian manifolds
(it is appropriate to underline that the definitions below can easily be extended
to the manifolds higher dimension). As does the Euclidean space in the case of
Riemannian manifolds, a key role is played by the Minkowski space.

Definition 2.3. Let us consider the following metric tensor η:

η =

(
−1 0
0 1

)
.

A Lorentzian manifold M, equipped with the metric η, is the Minkowski space.
The metric η is called Minkowski metric.

Remark 2.1. Historically, the definition of Minkowski space in the literature refers
to the 4-dimensional space [9], but this little abuse of notation should not cause con-
fusion, as we will work in the 2-dimensional case, unless explicitly stated otherwise.

The next definition introduce the notion of flat manifold, by using the very
usual concept of Ricci scalar curvature.
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Definition 2.4. A manifold (M, g) with a null Ricci scalar curvature is called flat
manifold. In this case, we shall call its metric flat metric. A manifold (M, g̃) is
conformally flat if its metric can be expressed, via the composition with a smooth
function Ω, as

g̃ = Ω · g,

where g is a flat metric.

Remark 2.2. It is clear that the Minkowski space of Def. 2.3 is a flat manifold.

In the previous definitions, we implicitly express the metric in terms of a
tensor (actually a matrix, in this case) as in Def. 2.3. However, it is possible to
give a different, and very useful, characterization for the metric, namely the line
element.

Definition 2.5. Let us consider a metric gij, where we indicate rows and columns
of the matrix associated to g by the indices i and j, respectively. By considering
the general curvilinear coordinates, it is possible to define the line element ds2 as:

ds2 = gijdq
idqj, i, j = 1, 2.

Here we are using the Einstein summation convention.

Remark 2.3. For the metric η of Def. 2.3 the line metric for the coordinates
(t, x) could be expressed by

ds2 = −dt2 + dx2

The fundamental result which inspired this work is given by the following
theorem, which gives a very powerful strategy to handle 2-dimensional Lorentzian
manifolds.

Theorem 2.1. Every 2-dimensional Lorentzian manifold (M, g) is conformally
flat.

For the proof see, e.g., Theorem 7.2 in [16]. The next section is devoted to
exploring the conformal factor in the case of manifolds with constant Ricci scalar
curvature.

Remark 2.4. Kühnel and Rademacher produced a very interesting study regard-
ing conformal geometry. In [10], they analyze the conformally Einstein product
spaces, providing a classification for such spaces by using the idea of warped ge-
ometry. Our work, starting from a similar point of view, emphasizes the role of
the conformal factor, laying out explicit formulas and the relative link to their
geometric interpretation by using Penrose diagrams.
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3. Conformal characterization

Firstly, we fix some important notation that we shall employ in this section.
For the conformal factor Ω, we shall make explicit the dependence on variables,
which for historically and interpretative reasons we identify with (t, x).

Let us consider a generic 2-dimensional Lorentzian manifold (M, g), whose
metric, thanks to Theorem 2.1, can be written as

g = Ω(t, x) · η (1)

where Ω(t, x) > 0 is a smooth function and η is the Minkowski metric defined in
Def. 2.3. The Ricci scalar curvature R can be expressed as a function of Ω and
its partial derivatives by

R =
− (∂tΩ(t, x))2 + (∂xΩ(t, x))2 + Ω(t, x) [∂2t Ω(t, x)− ∂2xΩ(t, x)]

(Ω(t, x))3
. (2)

If we restrict ourselves to a traditional form for Ω, namely

Ω(t, x) = eω(t,x),

then Eq. (2) becomes:

R =
(
−∂2t ω(t, x) + ∂2xω(t, x)

)
e−ω(t,x). (3)

Remark 3.1. It is possible, by similar but much more cumbersome calculations, to
compute the Ricci scalar curvature of a conformally flat manifold as a function of
the conformal factor in a general dimension n ≥ 2. Let us fix x = (x1, · · · , xn−1)
as the space coordinates, and t as the time coordinate. With this notation, we
obtain the general formula

R =

(
1

4
(n− 1)(n− 2)

(
n−1∑
i=1

(∂xiω(t,x))2 − (∂tω(t,x))2
)

+ (n− 1)

(
n−1∑
i=1

∂2xiω(t,x)− ∂2t ω(t,x)

))
e−ω(t,x).

However, this expression is difficult to treat in its general form. As one may notice
by direct computation, already for n = 3 the expression contains the square of the
first order derivatives, and it requires a much deeper analysis:

R =

(
1

2

(
2∑
i=1

(∂xiω(t, x1, x2))
2 − (∂tω(t, x1, x2))

2

)
+ 2

(
2∑
i=1

∂2xiω(t, x1, x2)− ∂2t ω(t, x1, x2)

))
e−ω(t,x1,x2).

We leave this, and higher dimensional cases, as outlook for future works. For the
purpose of this article, we fix n = 2, in order to be able to provide a complete
classification of 2-dimensional Lorentzian manifolds with Ricci scalar curvature,
as we do in Theorem 2.1.

We remark an interesting property of the 2-dimensional Lorentzian mani-
folds.
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Definition 3.1. Let (M, g) be a 2-dimensional Lorentzian manifold. We call it a
Einstein manifold if the following condition holds:

Ric = κ · g, (4)

for some constant κ ∈ R, where Ric denotes the Ricci curvature tensor (here we
are using the notation without indices as for the metric).

Proposition 3.1. A 2-dimensional Lorentzian manifold is Einstein if and only if
it has a constant Ricci scalar curvature R. Moreover the constant κ of Eq. (4) is
equal to R

2
.

Proof. It is not difficult to compute the Ricci curvature tensor in terms of Ω =
eω(t,x). We get:(

1
2

(
Ω(0,2)(t, x)− Ω(2,0)(t, x)

)
0

0 1
2

(
Ω(2,0)(t, x)− Ω(0,2)(t, x)

)) .
Now we see that the condition given by Eq. (4) holds if and only if

2κeω(t,x) =
(
−∂2t ω(t, x) + ∂2xω(t, x)

)
.

Thanks to Eq. (3) we conclude the proof. �

The conformal characterization of the Ricci scalar curvature given by Eq.
(3) provide a very simple way to construct Lorentzian manifolds with constant
curvature. The first step is to obtain the general form of a flat manifold. It is
trivial how this is strictly connected with the classical change of variables as we
shall see in Example 3.1.

Lemma 3.1. The conformal factor Ω(t, x) of a generic 2-dimensional flat Lorentz
manifold (i.e. with R = 0) can be written as

Ω(t, x) = φ(x+ t) · ψ(x− t). (5)

Proof. Let we fix R = 0. Thus, Eq. (3) leads to the one-dimensional wave equation.
It is well known (see, e.g. case 8 of Sect. 4.1.3 in [15]) that its solutions can be

expressed by the sum of a right traveling function φ̂ and a left traveling function
ψ̂. This means we can write:

ω(t, x) = φ̂(x+ t) + ψ̂(x− t),

and so

Ω(t, x) = eω(t,x) = exp
[
φ̂(x+ t) + ψ̂(x− t)

]
=

= exp
[
φ̂(x+ t)

]
· exp

[
ψ̂(x− t)

]
= φ(x+ t) · ψ(x− t).

�
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Remark 3.2. It is remarkable to notice that, setting u = x+ t and v = x− t, we
have actually switched to the null coordinates. It is trivial to prove that, starting
with the metric expressed in null coordinates, namely ds2 = dudv, we get the same
result of Lemma 3.1.

Example 3.1. Let we consider, for instance, the usual conformal transformation
of the Minkowski space, which leads to the Penrose-Carter diagram (see, for in-
stance, Chpt. 5 in [9]). It is easy to see, starting from the null coordinates1, that
the conformal factor could be written in terms of t and x as

Ω(t, x) = (cos(t) + cos(x))−2 =
1

4
cos−2

(
x+ t

2

)
cos−2

(
x− t

2

)
,

where now the range of t and x is given by:

−π < x < π and − π + |x| < t < π − |x|.

Thus, we recover, as expected, the form of Eq. (5).

−t2 + x2 = s2

x

t

(a) Minkowski space in
classic coordinates.

(cos t+ cosx)−2(−t2 + x2) = s2

x

t

∞∞

∞∞

(b) Penrose diagram of
Minkowski space.

Figure 1. Here we provide a comparison between the Minkowski
space in normal coordinates (a) and its conformal representation as
Penrose-Carter diagram (b). The figures present the locus of point
with the same space interval s2 (also known in literature as spacetime
interval), for several different values. We notice that the compact-
ification in (b) produces the classical “diamond shape”, where the
edges stand for the infinity.

1The trick is to set µ = arctan(u) and ν = arctan(v), with −π
2 ≤ µ ≤

π
2 and −π

2 ≤ ν ≤
π
2 .
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Now we shift the focus on those conformal factors that depend only of one
variable. We shall show (Example 3.2) how the general solution lead to a well
known manifold: the de Sitter space.

Lemma 3.2. Let us assume R 6= 0. The space-independent conformal factor Ω(t)
of a generic 2-dimensional Lorentz manifold can be written as

Ω(t) =
c1

(
−1 + tanh2

(
1
2

√
c1(t+ c2)2

))
2R

. (6)

with c1 and c2 arbitrary constants.

Similarly, the time-independent conformal factor Ω(x) of a generic Lorentz
manifold of dimension 2 can be written as

Ω(x) =
d1

(
1− tanh2

(
1
2

√
d1(x+ d2)2

))
2R

, (7)

with d1 and d2 arbitrary constants.

Proof. Here we just prove the space-independent case; the proof of the time-
independent case is analogous. Assuming ω to be independent of x, Eq. (3)
becomes

∂2

∂t2
ω(t) = Reω(t). (8)

After some computations, we obtain the solutions to the second order nonlinear
ODE (8):

ω(t) = log

c1
(
−1 + tanh2

(
1
2

√
c1(t+ c2)2

))
2R

 ,

where c1, c2 ∈ R. This concludes the proof. �

Example 3.2. Let us consider Eq. (6). Setting c1 = −4, c2 = 0 and R = 2, we
get:

Ω(t) = 1− tanh2(
√
−t2) = sec2(t),

which, for the range

−π
2
< t <

π

2
and 0 ≤ x < 2π,

is exactly the conformal factor defining the 2-dimensional de Sitter space [7] in
global coordinates (i.e. ds2 = sec2(t)(−dt2 + dx2)).

Finally we have the general case, which allow us to construct several inter-
esting manifolds and their Penrose- diagram as we present in Example 3.3.
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sec2 t(−t2 + x2) = s2

x

t

Figure 2. Penrose-Carter diagram of the 2-dimensional de Sitter
space in global coordinates.

Theorem 3.1. The general solution of Eq. (3) is given by

ω(t, x) = φ(x+ t) + ψ(x− t)− 2 log

∣∣∣∣k ∫ x+t

eφ(λ)dλ− R

8k

∫ x−t
eψ(λ)dλ+ C

∣∣∣∣ ,
(9)

which, in the original Ω notation, becomes

Ω(t, x) = exp [φ(x+ t)] · exp [ψ(x− t)] ·
(
k

∫ x+t

eφ(λ)dλ− R

8k

∫ x−t
eψ(λ)dλ+ C

)−2

,

(10)

where φ and ψ arbitrary (smooth) functions, k 6= 0 and C is an arbitrary real
constants. With

∫ x
f(λ)dλ we denote the integration of f(λ) with respect to λ and

then the substitution λ = x.

In literature, equation (3) is called modified (or generalized) Liouville equa-
tion, and it is deeply studied in many works (for further details, see [11, 3, 15]).

Remark 3.3. As in Remark 3.2, we can rewrite Eq. (10) using null coordinates
(u, v) (with ds2 = dudv). So we get

Ω(u, v) = eφ(u) · eψ(v)
(
k

∫ u

eφ(λ)dλ− R

8k

∫ v

eψ(λ)dλ+ C

)−2

(11)

with φ, ψ and C, k as in Theorem 3.1.

Example 3.3. Let us consider Eq. (10) and let φ and ψ be the identity function.
We also set k = 1, R = 2 and C = 0. So we obtain the following conformal factor
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Ω1(t, x)(−t2 + x2) = s2

x

t

(a) Space of Example
3.3 in classic coordi-
nates.

Ω2(t, x)(−t2 + x2) = s2

x

t

∞∞

∞∞

(b) Penrose diagram of
the space of Example
3.3.

Figure 3. Example 3.3 lead us to the construction of the particular
space (where the Ricci scalar curvature is R = 2) shown both in
standard coordinates (a) ad by the corresponding Penrose-Carter
diagram (b).

in standard coordinates

Ω1(t, x) = e2x
(
ex+t − 1

4
ex−t

)−2

,

which defines a metric of scalar curvature R = 2; see Figure 3(a) for a visualiza-
tion. By using Remark 3.3 and Eq. (11), it is possible to provide the Penrose-
diagram (see Example 3.1) as one can see in Figure 3. In this case the conformal
factor is given by:

Ω2(t, x) =
exp

(
tan
(
t+x
2

))
exp

(
tan
(
x−t
2

))(
2 cos

(
t+x
2

)
cos
(
x−t
2

))2 (
exp

(
tan
(
t+x
2

))
− 1

4
exp

(
tan
(
x−t
2

)))2 ,
where the range of t and x is:

−π < x < π and − π + |x| < t < π − |x|.

See Figure 3(b) for a useful visualization.

Remark 3.4. It is now possible, by varying parameters, to obtain all the possi-
ble Lorentzian space with constant Ricci scalar curvature and applying the same
argument we used in this work, also their corresponding Penrose-Carter diagram.
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4. Conclusions

In this note, we provided a constructive way to develop a conformal char-
acterization of 2-dimensional Lorentzian manifolds with constant Ricci scalar cur-
vature. The tools we used are very classical, but their application allow us to
create a suggestive set of Lorentzian manifolds, starting from the conformal fac-
tor which, as we have shown, identifies them. Many useful examples have been
proposed to explain the power of such construction. In the near future, we would
like to investigate other similar applications using the same approach to charac-
terize 2-dimensional Lorentzian manifolds with a general (i. e. not constant) Ricci
scalar curvature, or for the 3-dimensional Einstein manifolds (with the respective
geometric interpretation).
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