We introduce a Markov Modulated Process (MMP) to describe human mobility. We represent the mobility process as a time-varying graph, where a link specifies a connection between two nodes (humans) at any discrete time step. Each state of the Markov chain encodes a certain modification to the original graph. We show that our MMP model successfully captures the main features of a random mobility simulator, in which nodes moves in a square region. We apply our MMP model to human mobility, measured in a library.

Markov Modulated Process to Model Human Mobility / Chang, B.; Yang, L.; Sensi, M.; Achterberg, M. A.; Wang, F.; Rinaldi, M.; Mieghem, P. V.. - 1015:(2022), pp. 607-618. (Intervento presentato al convegno 10th International Conference on Complex Networks and Their Applications, COMPLEX NETWORKS 2021 tenutosi a Madrid (Esp) nel 30 November 2021 through 2 December 2021) [10.1007/978-3-030-93409-5_50].

Markov Modulated Process to Model Human Mobility

Sensi M.;
2022

Abstract

We introduce a Markov Modulated Process (MMP) to describe human mobility. We represent the mobility process as a time-varying graph, where a link specifies a connection between two nodes (humans) at any discrete time step. Each state of the Markov chain encodes a certain modification to the original graph. We show that our MMP model successfully captures the main features of a random mobility simulator, in which nodes moves in a square region. We apply our MMP model to human mobility, measured in a library.
2022
9783030934088
9783030934095
File in questo prodotto:
File Dimensione Formato  
MMP_for_Human_Mobility.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 414.08 kB
Formato Adobe PDF
414.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MMP_human_mobility_review.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 716.75 kB
Formato Adobe PDF
716.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2993448