In this work, we present a novel and general spectral theory to handle complex electromagnetic scattering problems. The technique is based on transverse equations for layered planar and angular structures, characteristic Green's function procedure, Wiener-Hopf technique. According to our opinion, for the first time, the proposed mathematical technique extends the possibilities of spectral analysis of EM problems in presence of angular regions filled by complex arbitrary linear media.

Diffraction in Presence of Angular Regions Filled by Arbitrary Linear Media / Daniele, Vito; Lombardi, Guido. - ELETTRONICO. - 25:(2024), pp. 43-44. (Intervento presentato al convegno IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI) tenutosi a Florence (Italy) nel 14-19 July 2024) [10.1109/ap-s/inc-usnc-ursi52054.2024.10686277].

Diffraction in Presence of Angular Regions Filled by Arbitrary Linear Media

Daniele, Vito;Lombardi, Guido
2024

Abstract

In this work, we present a novel and general spectral theory to handle complex electromagnetic scattering problems. The technique is based on transverse equations for layered planar and angular structures, characteristic Green's function procedure, Wiener-Hopf technique. According to our opinion, for the first time, the proposed mathematical technique extends the possibilities of spectral analysis of EM problems in presence of angular regions filled by complex arbitrary linear media.
2024
979-8-3503-6990-8
File in questo prodotto:
File Dimensione Formato  
aps_ursi_2024_template_MSWord_DL_vf.pdf

accesso aperto

Descrizione: authors' version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 269.6 kB
Formato Adobe PDF
269.6 kB Adobe PDF Visualizza/Apri
2024_APSURSI_fullpaper.pdf

non disponibili

Descrizione: editor's version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 320.41 kB
Formato Adobe PDF
320.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2993426