Recent advancements in autonomous vehicle re- search highlight the importance of Machine Learning (ML) models in tasks like motion planning, trajectory prediction, and emergency management. To support AI development, we propose a novel approach for generating on-demand datasets using the Simulator of Urban Mobility (SUMO) and a Generative Adversarial Network (GAN). Our method focuses on capturing critical events such as sudden pedestrian crossings, near-misses, and collisions, providing essential data to improve vehicle models’ responses to emergency situations.

GenSUMO: GenAI-Creation of Critical Scenarios for Autonomous Vehicle Testing / Angelini, Sergio; Gasco, Diego; Casetti, Claudio. - ELETTRONICO. - (2025), pp. 1-2. (Intervento presentato al convegno IEEE Consumer Communications & Networking Conference (CCNC) tenutosi a Las Vegas, NV (USA) nel 10-13 January 2025) [10.1109/CCNC54725.2025.10976090].

GenSUMO: GenAI-Creation of Critical Scenarios for Autonomous Vehicle Testing

Gasco, Diego;Casetti, Claudio
2025

Abstract

Recent advancements in autonomous vehicle re- search highlight the importance of Machine Learning (ML) models in tasks like motion planning, trajectory prediction, and emergency management. To support AI development, we propose a novel approach for generating on-demand datasets using the Simulator of Urban Mobility (SUMO) and a Generative Adversarial Network (GAN). Our method focuses on capturing critical events such as sudden pedestrian crossings, near-misses, and collisions, providing essential data to improve vehicle models’ responses to emergency situations.
2025
979-8-3315-0805-0
File in questo prodotto:
File Dimensione Formato  
GenSUMO_GenAI-Creation_of_Critical_Scenarios_for_Autonomous_Vehicle_Testing.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 134.48 kB
Formato Adobe PDF
134.48 kB Adobe PDF Visualizza/Apri
GenSUMO_GenAI-Creation_of_Critical_Scenarios_for_Autonomous_Vehicle_Testing.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 191.4 kB
Formato Adobe PDF
191.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2993041