Recent advancements in autonomous vehicle re- search highlight the importance of Machine Learning (ML) models in tasks like motion planning, trajectory prediction, and emergency management. To support AI development, we propose a novel approach for generating on-demand datasets using the Simulator of Urban Mobility (SUMO) and a Generative Adversarial Network (GAN). Our method focuses on capturing critical events such as sudden pedestrian crossings, near-misses, and collisions, providing essential data to improve vehicle models’ responses to emergency situations.
GenSUMO: GenAI-Creation of Critical Scenarios for Autonomous Vehicle Testing / Angelini, Sergio; Gasco, Diego; Casetti, Claudio. - ELETTRONICO. - (2025), pp. 1-2. (Intervento presentato al convegno IEEE Consumer Communications & Networking Conference (CCNC) tenutosi a Las Vegas, NV (USA) nel 10-13 January 2025) [10.1109/CCNC54725.2025.10976090].
GenSUMO: GenAI-Creation of Critical Scenarios for Autonomous Vehicle Testing
Gasco, Diego;Casetti, Claudio
2025
Abstract
Recent advancements in autonomous vehicle re- search highlight the importance of Machine Learning (ML) models in tasks like motion planning, trajectory prediction, and emergency management. To support AI development, we propose a novel approach for generating on-demand datasets using the Simulator of Urban Mobility (SUMO) and a Generative Adversarial Network (GAN). Our method focuses on capturing critical events such as sudden pedestrian crossings, near-misses, and collisions, providing essential data to improve vehicle models’ responses to emergency situations.File | Dimensione | Formato | |
---|---|---|---|
GenSUMO_GenAI-Creation_of_Critical_Scenarios_for_Autonomous_Vehicle_Testing.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
134.48 kB
Formato
Adobe PDF
|
134.48 kB | Adobe PDF | Visualizza/Apri |
GenSUMO_GenAI-Creation_of_Critical_Scenarios_for_Autonomous_Vehicle_Testing.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
191.4 kB
Formato
Adobe PDF
|
191.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2993041