This paper presents a flexible Industrial Internet of Things (IIoT) infrastructure model, highlighting the integration of the Long Short-Term Memory (LSTM) algorithm for predictive analysis. A key component of this model is the Concentrator, a fog-computing local hub that provides a sandbox environment for third-party developments. Within this framework, clients can collect data using mechanisms provided by Original Equipment Manufacturers (OEMs), such as AROL Closure Systems, while independently developing proprietary algorithms. This approach eliminates the need for direct interaction with OEMs. The paper explores the use of the LSTM algorithm to develop a predictor for analyzing machine temperature behavior, allowing for the anticipation of potential faults.

Optimizing LSTM-based temperature prediction algorithm for embedded system deployment / D'Agostino, Pietro; Violante, Massimo; Macario, Gianpaolo. - ELETTRONICO. - (2024), pp. 01-07. (Intervento presentato al convegno 29TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION tenutosi a Padova (IT) nel September 10-13, 2024) [10.1109/ETFA61755.2024.10711142].

Optimizing LSTM-based temperature prediction algorithm for embedded system deployment

D'Agostino, Pietro;Violante, Massimo;
2024

Abstract

This paper presents a flexible Industrial Internet of Things (IIoT) infrastructure model, highlighting the integration of the Long Short-Term Memory (LSTM) algorithm for predictive analysis. A key component of this model is the Concentrator, a fog-computing local hub that provides a sandbox environment for third-party developments. Within this framework, clients can collect data using mechanisms provided by Original Equipment Manufacturers (OEMs), such as AROL Closure Systems, while independently developing proprietary algorithms. This approach eliminates the need for direct interaction with OEMs. The paper explores the use of the LSTM algorithm to develop a predictor for analyzing machine temperature behavior, allowing for the anticipation of potential faults.
File in questo prodotto:
File Dimensione Formato  
2024182551_final_version.pdf

accesso aperto

Descrizione: Paper for ETFA2024
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri
Optimizing_Lstm-Based_Temperature_Prediction_Algorithm_for_Embedded_System_Deployment.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2993014