The extraction of conceptual and terminological knowledge from legal documents is a crucial task in the legal domain. In this paper we propose ASKE (Automated System for Knowledge Extraction), a system for the extraction of knowledge that exploits contextual embedding and zero-shot learning techniques in order to retrieve relevant conceptual and terminological knowledge from legal documents. Moreover, in the paper we discuss some preliminary experimental results on a real dataset consisting of a corpus of Illinois State Courts’ decisions taken from the Caselaw Access Project (CAP).

Context-Aware Knowledge Extraction from Legal Documents Through Zero-Shot Classification / Ferrara, A.; Picascia, S.; Riva, D.. - 13650:(2022), pp. 81-90. (Intervento presentato al convegno Advances in Conceptual Modeling ER 2022 Workshops, CMLS, EmpER, and JUSMODDigital Law and Conceptual Modeling, JUSMOD 2022 held at 41st International Conference on Conceptual Modeling, ER 2022 tenutosi a Hyderabad (IND) nel October 17–20, 2022) [10.1007/978-3-031-22036-4_8].

Context-Aware Knowledge Extraction from Legal Documents Through Zero-Shot Classification

Riva D.
2022

Abstract

The extraction of conceptual and terminological knowledge from legal documents is a crucial task in the legal domain. In this paper we propose ASKE (Automated System for Knowledge Extraction), a system for the extraction of knowledge that exploits contextual embedding and zero-shot learning techniques in order to retrieve relevant conceptual and terminological knowledge from legal documents. Moreover, in the paper we discuss some preliminary experimental results on a real dataset consisting of a corpus of Illinois State Courts’ decisions taken from the Caselaw Access Project (CAP).
2022
9783031220357
9783031220364
File in questo prodotto:
File Dimensione Formato  
ASKE___JUSMOD_2022.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 379.42 kB
Formato Adobe PDF
379.42 kB Adobe PDF Visualizza/Apri
978-3-031-22036-4_8.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 665.8 kB
Formato Adobe PDF
665.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992896