Functional Text Segmentation is the task of partitioning a textual document in segments that play a certain function. In the legal domain, this is important to support downstream tasks, but it faces also challenges of segment discontinuity, few-shot scenario, and domain specificity. We propose an approach that, revisiting the underlying graph structure of a Conditional Random Field and relying on a combination of neural embeddings and engineered features, is capable of addressing these challenges. Evaluation on a dataset of Italian case law decisions yields promising results.
Few-Shot Legal Text Segmentation via Rewiring Conditional Random Fields: A Preliminary Study / Ferrara, A.; Picascia, S.; Riva, D.. - 14319:(2023), pp. 141-150. (Intervento presentato al convegno ER 2023 Workshops, CMLS, CMOMM4FAIR, EmpER, JUSMOD, OntoCom, QUAMES, and SmartFood tenutosi a Lisbon (PRT) nel November 6–9, 2023) [10.1007/978-3-031-47112-4_13].
Few-Shot Legal Text Segmentation via Rewiring Conditional Random Fields: A Preliminary Study
Riva D.
2023
Abstract
Functional Text Segmentation is the task of partitioning a textual document in segments that play a certain function. In the legal domain, this is important to support downstream tasks, but it faces also challenges of segment discontinuity, few-shot scenario, and domain specificity. We propose an approach that, revisiting the underlying graph structure of a Conditional Random Field and relying on a combination of neural embeddings and engineered features, is capable of addressing these challenges. Evaluation on a dataset of Italian case law decisions yields promising results.File | Dimensione | Formato | |
---|---|---|---|
JUSMOD23.pdf
embargo fino al 26/10/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
506.57 kB
Formato
Adobe PDF
|
506.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
978-3-031-47112-4_13.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2992892