Advances in machine learning and pattern recognition have led to the development of data-driven approaches for Structural Health Monitoring (SHM). However, their application in real case studies is often limited by the lack or incompleteness of experimental data. Thus, Population-Based Structural Health Monitoring (PBSHM) addresses these issues by promoting knowledge-sharing between similar structures. The PBSHM theory distinguishes between homogeneous and heterogeneous populations. Structures in a heterogeneous population include different sources of variability, which affect their dynamic response and could reduce the effectiveness of knowledge-sharing performance, leading to so-called negative transfer. This study investigates how attribute variations influence knowledge transfer in a population of heterogeneous laboratory-scale aircraft. The transfer-learning problem is solved via a domain-adaptation algorithm, i.e., the Joint Distribution Adaptation (JDA), considering damage-detection and localisation tasks.

Knowledge sharing for improving damage identification across a population of heterogeneous laboratory-scale aircraft models / Delo, G.; Surace, C.; Worden, K.. - (2024), pp. 3109-3119. (Intervento presentato al convegno 31st International Conference on Noise and Vibration Engineering (ISMA 2024) tenutosi a Leuven (BE) nel September 9-11 2024).

Knowledge sharing for improving damage identification across a population of heterogeneous laboratory-scale aircraft models

Delo G.;Surace C.;Worden K.
2024

Abstract

Advances in machine learning and pattern recognition have led to the development of data-driven approaches for Structural Health Monitoring (SHM). However, their application in real case studies is often limited by the lack or incompleteness of experimental data. Thus, Population-Based Structural Health Monitoring (PBSHM) addresses these issues by promoting knowledge-sharing between similar structures. The PBSHM theory distinguishes between homogeneous and heterogeneous populations. Structures in a heterogeneous population include different sources of variability, which affect their dynamic response and could reduce the effectiveness of knowledge-sharing performance, leading to so-called negative transfer. This study investigates how attribute variations influence knowledge transfer in a population of heterogeneous laboratory-scale aircraft. The transfer-learning problem is solved via a domain-adaptation algorithm, i.e., the Joint Distribution Adaptation (JDA), considering damage-detection and localisation tasks.
File in questo prodotto:
File Dimensione Formato  
ISMA2024_GiuliaDelo_finale.pdf

embargo fino al 11/09/2025

Descrizione: contributo ISMA versione finale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Contribution_129_proceeding_3.pdf

non disponibili

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992805