Heart failure poses a significant global health burden with high prevalence and mortality rates. A promising possibility in this context is the constant monitoring of the patients through telemedicine. The aim of this work is to present a digital twin of a patient at risk of heart failure. Applying machine learning to the recorded data of the patient, the system is able to early detect potential issues and improve the outcome.

Design of a Digital Twin of the Heart for the Management of Heart Failure Patients / Scotto, Andrea; Giordano, Noemi; Rosati, Samanta; Balestra, Gabriella. - ELETTRONICO. - 316:(2024), pp. 875-876. (Intervento presentato al convegno Medical Informatics Europe (MIE) 2024 tenutosi a Athens (Greece) nel 25-29 August 2024) [10.3233/shti240551].

Design of a Digital Twin of the Heart for the Management of Heart Failure Patients

Scotto, Andrea;Giordano, Noemi;Rosati, Samanta;Balestra, Gabriella
2024

Abstract

Heart failure poses a significant global health burden with high prevalence and mortality rates. A promising possibility in this context is the constant monitoring of the patients through telemedicine. The aim of this work is to present a digital twin of a patient at risk of heart failure. Applying machine learning to the recorded data of the patient, the system is able to early detect potential issues and improve the outcome.
2024
9781643685335
File in questo prodotto:
File Dimensione Formato  
SHTI-316-SHTI240551.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 265.39 kB
Formato Adobe PDF
265.39 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992407