Heart failure poses a significant global health burden with high prevalence and mortality rates. A promising possibility in this context is the constant monitoring of the patients through telemedicine. The aim of this work is to present a digital twin of a patient at risk of heart failure. Applying machine learning to the recorded data of the patient, the system is able to early detect potential issues and improve the outcome.
Design of a Digital Twin of the Heart for the Management of Heart Failure Patients / Scotto, Andrea; Giordano, Noemi; Rosati, Samanta; Balestra, Gabriella. - ELETTRONICO. - 316:(2024), pp. 875-876. (Intervento presentato al convegno Medical Informatics Europe (MIE) 2024 tenutosi a Athens (Greece) nel 25-29 August 2024) [10.3233/shti240551].
Design of a Digital Twin of the Heart for the Management of Heart Failure Patients
Scotto, Andrea;Giordano, Noemi;Rosati, Samanta;Balestra, Gabriella
2024
Abstract
Heart failure poses a significant global health burden with high prevalence and mortality rates. A promising possibility in this context is the constant monitoring of the patients through telemedicine. The aim of this work is to present a digital twin of a patient at risk of heart failure. Applying machine learning to the recorded data of the patient, the system is able to early detect potential issues and improve the outcome.File | Dimensione | Formato | |
---|---|---|---|
SHTI-316-SHTI240551.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
265.39 kB
Formato
Adobe PDF
|
265.39 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2992407