Kolmogorov-Arnold Networks (KANs) have very recently been introduced into the world of machine learning, quickly capturing the attention of the entire community. However, KANs have mostly been tested for approximating complex functions or processing synthetic data, while a test on real-world tabular datasets is currently lacking. In this paper, we present a benchmarking study comparing KANs and Multi-Layer Perceptrons (MLPs) on tabular datasets. The study evaluates task performance and training times. From the results obtained on the various datasets, KANs demonstrate superior or comparable accuracy and F 1 scores, excelling particularly in datasets with numerous instances, suggesting robust handling of complex data. We also highlight that this performance improvement of KANs comes with a higher computational cost when compared to MLPs of comparable sizes.
A Benchmarking Study of Kolmogorov-Arnold Networks on Tabular Data / Poeta, Eleonora; Giobergia, Flavio; Pastor, Eliana; Cerquitelli, Tania; Baralis, Elena. - (2024). (Intervento presentato al convegno IEEE International Conference Application of Information and Communication Technologies tenutosi a Turin (ITA) nel 25-27 September 2024) [10.1109/AICT61888.2024.10740444].
A Benchmarking Study of Kolmogorov-Arnold Networks on Tabular Data
Poeta, Eleonora;Giobergia, Flavio;Pastor, Eliana;Cerquitelli, Tania;Baralis, Elena
2024
Abstract
Kolmogorov-Arnold Networks (KANs) have very recently been introduced into the world of machine learning, quickly capturing the attention of the entire community. However, KANs have mostly been tested for approximating complex functions or processing synthetic data, while a test on real-world tabular datasets is currently lacking. In this paper, we present a benchmarking study comparing KANs and Multi-Layer Perceptrons (MLPs) on tabular datasets. The study evaluates task performance and training times. From the results obtained on the various datasets, KANs demonstrate superior or comparable accuracy and F 1 scores, excelling particularly in datasets with numerous instances, suggesting robust handling of complex data. We also highlight that this performance improvement of KANs comes with a higher computational cost when compared to MLPs of comparable sizes.File | Dimensione | Formato | |
---|---|---|---|
A_Benchmarking_Study_of_Kolmogorov-Arnold_Networks_on_Tabular_Data (1).pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
287.52 kB
Formato
Adobe PDF
|
287.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2992391