This study explores the use of CYGNSS satellite data for detecting cyanobacterial harmful algal blooms (HABs). CYGNSS's unique capabilities in measuring surface reflectivity are harnessed to identify the telltale signs of algal blooms, offering a significant improvement over the traditional observation method. Preliminary results demonstrate that machine learning algorithms applied to CYGNSS data provide effective and timely detection of HABs. This method is promising for enhancing global water quality monitoring and management.

The Detection of Algal Blooms Based on Machine Learning Algorithms Using CYGNSS Data / Jia, Yan; Liu, Quan; Yu, Heng; Lv, Yan; Wu, Zhen; Jin, Shuanggen; Peinetti, Fabio; Savi, Patrizia. - ELETTRONICO. - (2024), pp. 1-4. (Intervento presentato al convegno International Geoscience and Remote Sensing Symposium tenutosi a Athens (Greece) nel 7-12 July, 2024).

The Detection of Algal Blooms Based on Machine Learning Algorithms Using CYGNSS Data

Fabio Peinetti;Patrizia Savi
2024

Abstract

This study explores the use of CYGNSS satellite data for detecting cyanobacterial harmful algal blooms (HABs). CYGNSS's unique capabilities in measuring surface reflectivity are harnessed to identify the telltale signs of algal blooms, offering a significant improvement over the traditional observation method. Preliminary results demonstrate that machine learning algorithms applied to CYGNSS data provide effective and timely detection of HABs. This method is promising for enhancing global water quality monitoring and management.
File in questo prodotto:
File Dimensione Formato  
igarss paper abstract-final-v1ps.pdf

non disponibili

Descrizione: 2024 IGARSS
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 773.05 kB
Formato Adobe PDF
773.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992191