Purpose Material extrusion (MEX) is one of the most known techniques in the additive manufacturing (AM) sector to produce components with a wide range of polymeric and composite materials. Moisture causes alterations in material properties and for filaments strongly hygroscopic like nylon-based composites this means greater ease of deterioration. Drying the filament to reduce the moisture content may not be sufficient if the humidity is not controlled during printing. The purpose of this study is to achieve the recovery of a commercial nylon-based composite filament by applying process optimization using an open source MEX machine. Design/methodology/approach A statistical approach based on Taguchi’s method allowed to achieve an ultimate tensile strength (UTS). A verification of the geometrical capabilities of the process has been performed according to the standard ISO/ASTM 52902-2019. Chemical tests were also carried out to test the resistance to corrosion in acid and basic solutions. Findings An UTS of 71.37 MPa was obtained, significantly higher than the value declared by the filament’s manufacturer (Stratasys Inc., USA). The best configuration of process parameters leads to good geometrical deviations for flat surfaces, in a range of 0.01 and 0.38 for flatness, while cylindrical faces showed more important deviations from the nominal values. The good applicability of the material in corrosive environments has been confirmed. Originality/value This study examined the performance restoration potential of a nylon composite filament that was significantly affected by storage conditions. For the filament manufacturer, if the material remains in ambient air for an hour or idle in the machine for more than 24 h, the material may no longer be suitable for printing. The study highlighted that the drying of the filament must not be temporary but constant to guarantee printability, and, by acting on the process parameters, it is possible to obtain better mechanical properties than declared by the manufacturer.

Restoration of a wet corrosion-resistant composite filament for material extrusion process / Bove, Alessandro; Lieske, Fulvio; Calignano, Flaviana; Iuliano, Luca. - In: RAPID PROTOTYPING JOURNAL. - ISSN 1355-2546. - ELETTRONICO. - 30:15(2024). [10.1108/RPJ-01-2024-0025]

Restoration of a wet corrosion-resistant composite filament for material extrusion process

Bove, Alessandro;Calignano, Flaviana;Iuliano, Luca
2024

Abstract

Purpose Material extrusion (MEX) is one of the most known techniques in the additive manufacturing (AM) sector to produce components with a wide range of polymeric and composite materials. Moisture causes alterations in material properties and for filaments strongly hygroscopic like nylon-based composites this means greater ease of deterioration. Drying the filament to reduce the moisture content may not be sufficient if the humidity is not controlled during printing. The purpose of this study is to achieve the recovery of a commercial nylon-based composite filament by applying process optimization using an open source MEX machine. Design/methodology/approach A statistical approach based on Taguchi’s method allowed to achieve an ultimate tensile strength (UTS). A verification of the geometrical capabilities of the process has been performed according to the standard ISO/ASTM 52902-2019. Chemical tests were also carried out to test the resistance to corrosion in acid and basic solutions. Findings An UTS of 71.37 MPa was obtained, significantly higher than the value declared by the filament’s manufacturer (Stratasys Inc., USA). The best configuration of process parameters leads to good geometrical deviations for flat surfaces, in a range of 0.01 and 0.38 for flatness, while cylindrical faces showed more important deviations from the nominal values. The good applicability of the material in corrosive environments has been confirmed. Originality/value This study examined the performance restoration potential of a nylon composite filament that was significantly affected by storage conditions. For the filament manufacturer, if the material remains in ambient air for an hour or idle in the machine for more than 24 h, the material may no longer be suitable for printing. The study highlighted that the drying of the filament must not be temporary but constant to guarantee printability, and, by acting on the process parameters, it is possible to obtain better mechanical properties than declared by the manufacturer.
File in questo prodotto:
File Dimensione Formato  
10-1108_RPJ-01-2024-0025.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2991085