Abstract Fully electric vehicles with multiple drivetrains allow a significant variation of the steady-state and transient cornering responses through the individual control of the electric motor drives. As a consequence, alternative driving modes can be created that provide the driver the option to select the preferred dynamic vehicle behavior. This article presents a torque-vectoring control structure based on the combination of feedforward and feedback contributions for the continuous control of vehicle yaw rate. The controller is specifically developed to be easily implementable on real-world vehicles. A novel model-based procedure for the definition of the control objectives is described in detail, together with the automated tuning process of the algorithm. The implemented control functions are demonstrated with experimental vehicle tests. The results show the possibilities of torque-vectoring control in designing the vehicle understeer characteristic.

Driving modes for designing the cornering response of fully electric vehicles with multiple motors / De Novellis, L.; Sorniotti, A.; Gruber, P.. - In: MECHANICAL SYSTEMS AND SIGNAL PROCESSING. - ISSN 0888-3270. - 64-65:(2015), pp. 1-15. [10.1016/j.ymssp.2015.03.024]

Driving modes for designing the cornering response of fully electric vehicles with multiple motors

Sorniotti A.;
2015

Abstract

Abstract Fully electric vehicles with multiple drivetrains allow a significant variation of the steady-state and transient cornering responses through the individual control of the electric motor drives. As a consequence, alternative driving modes can be created that provide the driver the option to select the preferred dynamic vehicle behavior. This article presents a torque-vectoring control structure based on the combination of feedforward and feedback contributions for the continuous control of vehicle yaw rate. The controller is specifically developed to be easily implementable on real-world vehicles. A novel model-based procedure for the definition of the control objectives is described in detail, together with the automated tuning process of the algorithm. The implemented control functions are demonstrated with experimental vehicle tests. The results show the possibilities of torque-vectoring control in designing the vehicle understeer characteristic.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990787