In many applications the accurate representation of the computational domain is a key factor to obtain reliable and effective numerical solutions. Curved interfaces, which might be internal, related to physical data, or portions of the physical boundary, are often met in real applications. However, they are often approximated leading to a geometrical error that might become dominant and deteriorate the quality of the results. Underground problems often involve the motion of fluids where the fundamental governing equation is the Darcy law. High quality velocity fields are of paramount importance for the successful subsequent coupling with other physical phenomena such as transport. The virtual element method, as solution scheme, is known to be applicable in problems whose discretizations requires cells of general shape, and the mixed formulation is here preferred to obtain accurate velocity fields. To overcome the issues associated to the complex geometries and, at the same time, retaining the quality of the solutions, we present here the virtual element method to solve the Darcy problem, in mixed form, in presence of curved interfaces in two and three dimensions. The numerical scheme is presented in detail explaining the discrete setting with a focus on the treatment of curved interfaces. Examples, inspired from industrial applications, are presented showing the validity of the proposed approach.

The Mixed Virtual Element Method for Grids with Curved Interfaces in Single-Phase Flow Problems / Dassi, Franco; Fumagalli, Alessio; Losapio, Davide; Scialò, Stefano; Scotti, Anna; Vacca, Giuseppe. - (2021), pp. 1-15. (Intervento presentato al convegno 2021 SPE Reservoir Simulation Conference, RSC 2021) [10.2118/203998-ms].

The Mixed Virtual Element Method for Grids with Curved Interfaces in Single-Phase Flow Problems

Fumagalli, Alessio;Scialò, Stefano;
2021

Abstract

In many applications the accurate representation of the computational domain is a key factor to obtain reliable and effective numerical solutions. Curved interfaces, which might be internal, related to physical data, or portions of the physical boundary, are often met in real applications. However, they are often approximated leading to a geometrical error that might become dominant and deteriorate the quality of the results. Underground problems often involve the motion of fluids where the fundamental governing equation is the Darcy law. High quality velocity fields are of paramount importance for the successful subsequent coupling with other physical phenomena such as transport. The virtual element method, as solution scheme, is known to be applicable in problems whose discretizations requires cells of general shape, and the mixed formulation is here preferred to obtain accurate velocity fields. To overcome the issues associated to the complex geometries and, at the same time, retaining the quality of the solutions, we present here the virtual element method to solve the Darcy problem, in mixed form, in presence of curved interfaces in two and three dimensions. The numerical scheme is presented in detail explaining the discrete setting with a focus on the treatment of curved interfaces. Examples, inspired from industrial applications, are presented showing the validity of the proposed approach.
File in questo prodotto:
File Dimensione Formato  
complete_spe_journal.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
SPE-203998-ms.pdf

non disponibili

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990433