We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.
On the continuum limit of epidemiological models on graphs: Convergence and approximation results / Ayuso De Dios, B.; Dovetta, S.; Spinolo, L. V.. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 34:8(2024), pp. 1483-1532. [10.1142/S0218202524500271]
On the continuum limit of epidemiological models on graphs: Convergence and approximation results
Dovetta S.;
2024
Abstract
We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.File | Dimensione | Formato | |
---|---|---|---|
2024_ADS_M3AS.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
763.82 kB
Formato
Adobe PDF
|
763.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AyDoSp_FINAL.pdf
embargo fino al 30/04/2025
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
507.94 kB
Formato
Adobe PDF
|
507.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2990431