We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.

On the continuum limit of epidemiological models on graphs: Convergence and approximation results / Ayuso De Dios, B.; Dovetta, S.; Spinolo, L. V.. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 34:8(2024), pp. 1483-1532. [10.1142/S0218202524500271]

On the continuum limit of epidemiological models on graphs: Convergence and approximation results

Dovetta S.;
2024

Abstract

We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.
File in questo prodotto:
File Dimensione Formato  
2024_ADS_M3AS.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 763.82 kB
Formato Adobe PDF
763.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
AyDoSp_FINAL.pdf

embargo fino al 30/04/2025

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 507.94 kB
Formato Adobe PDF
507.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990431