We propose a numerical method tailored to perform interface-resolved simulations of evaporating multicomponent two-phase flows. The novelty of the method lies in the use of Robin boundary conditions to couple the transport equations for the vaporized species in the gas phase and the transport equations of the same species in the liquid phase. The Robin boundary condition is implemented with the cost-effective procedure proposed by Chai et al. [1] and consists of two steps: (1) calculating the normal derivative of the mass fraction fields in cells adjacent to the interface through the reconstruction of a linear polynomial system, and (2) extrapolating the normal derivative and the ghost value in the normal direction using a linear partial differential equation. This methodology yields a second-order accurate solution for the Poisson equation with a Robin boundary condition and a first-order accurate solution for the Stefan problem. The overall methodology is implemented in an efficient two-fluid solver, which includes a Volume-of-Fluid (VoF) approach for the interface representation, a divergence-free extension of the liquid velocity field onto the entire domain to transport the VoF, and the temperature equation to include thermal effects. We demonstrate the convergence of the numerical method to the analytical solution for multicomponent isothermal evaporation and observe good overall computational performance for simulating non-isothermal evaporating two-fluid flows in two and three dimensions.

A Volume-of-Fluid method for multicomponent droplet evaporation with Robin boundary conditions / Zamani Salimi, Salar; Scapin, Nicolò; Popescu, Elena-Roxana; Costa, Pedro; Brandt, Luca. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 514:(2024). [10.1016/j.jcp.2024.113211]

A Volume-of-Fluid method for multicomponent droplet evaporation with Robin boundary conditions

Brandt, Luca
2024

Abstract

We propose a numerical method tailored to perform interface-resolved simulations of evaporating multicomponent two-phase flows. The novelty of the method lies in the use of Robin boundary conditions to couple the transport equations for the vaporized species in the gas phase and the transport equations of the same species in the liquid phase. The Robin boundary condition is implemented with the cost-effective procedure proposed by Chai et al. [1] and consists of two steps: (1) calculating the normal derivative of the mass fraction fields in cells adjacent to the interface through the reconstruction of a linear polynomial system, and (2) extrapolating the normal derivative and the ghost value in the normal direction using a linear partial differential equation. This methodology yields a second-order accurate solution for the Poisson equation with a Robin boundary condition and a first-order accurate solution for the Stefan problem. The overall methodology is implemented in an efficient two-fluid solver, which includes a Volume-of-Fluid (VoF) approach for the interface representation, a divergence-free extension of the liquid velocity field onto the entire domain to transport the VoF, and the temperature equation to include thermal effects. We demonstrate the convergence of the numerical method to the analytical solution for multicomponent isothermal evaporation and observe good overall computational performance for simulating non-isothermal evaporating two-fluid flows in two and three dimensions.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021999124004601-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.28 MB
Formato Adobe PDF
3.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990400