Given the challenges we face of an ageing infrastructure and insufficient maintenance, there is a critical shift towards preventive and predictive maintenance in construction. Self-sensing cement-based materials have drawn interest in this sector due to their high monitoring performance and durability compared to electronic sensors. While bulk applications have been well-discussed within this field, several challenges exist in their implementation for practical applications, such as poor workability and high manufacturing costs at larger volumes. This paper discusses the development of smart carbon-based cementitious coatings for strain monitoring of concrete substrates under flexural loading. This work presents a physical, electrical, and electromechanical investigation of sensing coatings with varying carbon black (CB) concentrations along with the geometric optimisation of the sensor design. The optimal strain-sensing performance, 55.5 ± 2.7, was obtained for coatings with 2 wt% of conductive filler, 3 mm thickness, and a gauge length of 60 mm. The results demonstrate the potential of applying smart coatings with carbon black addition for concrete strain monitoring.

Strain Monitoring of Concrete Using Carbon Black-Based Smart Coatings / Milone, G.; Vlachakis, C.; Tulliani, J. -M.; Al-Tabbaa, A.. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 17:7(2024), pp. 1-35. [10.3390/ma17071577]

Strain Monitoring of Concrete Using Carbon Black-Based Smart Coatings

Tulliani J. -M.;
2024

Abstract

Given the challenges we face of an ageing infrastructure and insufficient maintenance, there is a critical shift towards preventive and predictive maintenance in construction. Self-sensing cement-based materials have drawn interest in this sector due to their high monitoring performance and durability compared to electronic sensors. While bulk applications have been well-discussed within this field, several challenges exist in their implementation for practical applications, such as poor workability and high manufacturing costs at larger volumes. This paper discusses the development of smart carbon-based cementitious coatings for strain monitoring of concrete substrates under flexural loading. This work presents a physical, electrical, and electromechanical investigation of sensing coatings with varying carbon black (CB) concentrations along with the geometric optimisation of the sensor design. The optimal strain-sensing performance, 55.5 ± 2.7, was obtained for coatings with 2 wt% of conductive filler, 3 mm thickness, and a gauge length of 60 mm. The results demonstrate the potential of applying smart coatings with carbon black addition for concrete strain monitoring.
2024
File in questo prodotto:
File Dimensione Formato  
Strain Monitoring of Concrete Using Carbon Black-Based Smart Coatings.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 8.63 MB
Formato Adobe PDF
8.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990360