Among advanced Deep Neural Network models, Capsule Networks (CapsNets) have shown high learning and generalization capabilities for advanced tasks. Their capability to learn hierarchical information of features makes them appealing in many applications. However, their compute-intensive nature poses several challenges for their deployment on resource-constrained devices. This chapter provides an optimization flow at the software and at the hardware level for improving the energy efficiency of the CapsNets execution.

Hardware and Software Optimizations for Capsule Networks / Marchisio, Alberto; Bussolino, Beatrice; Colucci, Alessio; Mrazek, Vojtech; Hanif, Muhammad Abdullah; Martina, Maurizio; Masera, Guido; Shafique, Muhammad - In: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing / Pasricha S., Shafique M.. - ELETTRONICO. - [s.l] : Springer, 2024. - ISBN 9783031399312. - pp. 303-328 [10.1007/978-3-031-39932-9_12]

Hardware and Software Optimizations for Capsule Networks

Martina, Maurizio;Masera, Guido;
2024

Abstract

Among advanced Deep Neural Network models, Capsule Networks (CapsNets) have shown high learning and generalization capabilities for advanced tasks. Their capability to learn hierarchical information of features makes them appealing in many applications. However, their compute-intensive nature poses several challenges for their deployment on resource-constrained devices. This chapter provides an optimization flow at the software and at the hardware level for improving the energy efficiency of the CapsNets execution.
2024
9783031399312
9783031399329
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
File in questo prodotto:
File Dimensione Formato  
bussolino_springer_2023.pdf

accesso riservato

Descrizione: Chapter editorial version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
EmbeddedMLBook_CapsNets_chapter.pdf

Open Access dal 11/10/2024

Descrizione: Versione autori
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990298