
14 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Hardware and Software Optimizations for Capsule Networks / Marchisio, Alberto; Bussolino, Beatrice; Colucci, Alessio;
Mrazek, Vojtech; Hanif, Muhammad Abdullah; Martina, Maurizio; Masera, Guido; Shafique, Muhammad - In: Embedded
Machine Learning for Cyber-Physical, IoT, and Edge Computing / Pasricha S., Shafique M.. - ELETTRONICO. - [s.l] :
Springer, 2024. - ISBN 9783031399312. - pp. 303-328 [10.1007/978-3-031-39932-9_12]

Original

Hardware and Software Optimizations for Capsule Networks

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-3-031-39932-9_12

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in Embedded Machine Learning for Cyber-
Physical, IoT, and Edge Computing. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-
3-031-39932-9_12

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990298 since: 2024-07-19T12:03:36Z

Springer

Hardware and Software Optimizations for
Capsule Networks

Alberto Marchisio, Beatrice Bussolino, Alessio Colucci, Vojtech Mrazek,
Muhammad Abdullah Hanif, Maurizio Martina, Guido Masera, and Muhammad
Shafique

Alberto Marchisio
Technische Universität Wien (TU Wien), Vienna, Austria
Mailing address: Treitlstrasse 3, 1040 Wien, Austria
e-mail: alberto.marchisio@tuwien.ac.at
Telephone number: +43 (1) 58801-18203

Beatrice Bussolino
Politecnico di Torino, Turin, Italy
Mailing address: Corso Castelfidardo, 39, 10129 Torino, Italy
e-mail: beatrice.bussolino@polito.it
Telephone number: +39 0110904205

Alessio Colucci
Technische Universität Wien (TU Wien), Vienna, Austria
Mailing address: Treitlstrasse 3, 1040 Wien, Austria
e-mail: alessio.colucci@tuwien.ac.at
Telephone number: +43 (1) 58801-18203

Vojtech Mrazek
Brno University of Technology, Brno, Czechia
Mailing address: Božetěchova 2/1, 612 00 Brno, Czechia
e-mail: mrazek@fit.vutbr.cz
Telephone number: +420 54114 1348

Muhammad Abdullah Hanif
eBrain Lab, Division of Engineering, New York University Abu Dhabi, UAE
Mailing address: A1-173, Division of Engineering, New York University Abu Dhabi, Saadiyat
Island, Abu Dhabi, UAE
e-mail: mh6117@nyu.edu
Telephone number: +971-56-5262839

Maurizio Martina
Politecnico di Torino, Turin, Italy
Mailing address: Corso Castelfidardo, 39, 10129 Torino, Italy
e-mail: maurizio.martina@polito.it
Telephone number: +39 0110904205

Guido Masera
Politecnico di Torino, Turin, Italy
Mailing address: Corso Castelfidardo, 39, 10129 Torino, Italy
e-mail: guido.masera@polito.it
Telephone number: +39 0110904102

Muhammad Shafique
eBrain Lab, Division of Engineering, New York University Abu Dhabi, UAE
Mailing address: A1-173, Division of Engineering, New York University Abu Dhabi, Saadiyat
Island, Abu Dhabi, UAE

1

2 A. Marchisio et al.

Abstract
Among advanced Deep Neural Network models, Capsule Networks (CapsNets)
have shown high learning and generalization capabilities for advanced tasks. Their
capability to learn hierarchical information of features makes them appealing
in many applications. However, their compute-intensive nature poses several
challenges for their deployment on resource-constrained devices. This chapter
provides an optimization flow at the software and at the hardware level for
improving the energy-efficiency of the CapsNets’ execution.

Keywords
Capsule Networks, Deep Learning, Hardware Accelerator, Software Optimizations,
Energy Efficiency

1 Introduction

In recent years, Capsule Networks (CapsNets) have become popular among advanced
Machine Learning (ML) models [3], due to their high learning capabilities and
improved generalization ability, compared to the traditional Deep Neural Networks
(DNNs). The ability to learn hierarchical information of different features (position,
orientation, and scaling) in a single capsule allows to achieve high accuracy in
machine learning vision applications, e.g., MNIST [15] and Fashion-MNIST [40]
classification, as well as effective applicability to other ML application domains, such
as speech recognition [39], natural language processing [41], and healthcare [30].
Indeed, CapsNets are able to encapsulate the hierarchical and spatial information of
the input features in a closer way to our current understanding of the human brain’s
functionality. It is shown by recent analyses about the CapsNets’ robustness against
affine transformations and adversarial attacks [7][27][29], showing that CapsNets
are more resilient against such vulnerability threats than traditional DNNs which
have similar classification accuracy.

However, the presence of capsules in the layers introduces an additional dimension
compared to the matrices of the convolutional and fully-connected layers of the
traditional DNNs, which significantly increase the computations and communication
workload of the underlying hardware. Therefore, the main challenge in deploying
CapsNets is their extremely high complexity. They require intense computations due
to the multiplications in the matrices of capsules and the iterative dynamic routing-
by-agreement algorithm for learning the cross-coupling between capsules. Figure 1
compares the CapsNet [36] with the LeNet [15] and the AlexNet [14], in terms
of their memory footprints and total number of multiply-and-accumulate (MAC)
operations needed to perform an inference pass. The MACs/memory ratio is a good

e-mail: muhammad.shafique@nyu.edu
Telephone number: +971-56-5262839

Hardware and Software Optimizations for Capsule Networks 3

0

10

20

30

40

1

10

100

1000

10000

LeNet AlexNet CapsNet

M
A

C
s

/
M

e
m

o
ry

M
e
m

o
ry

 [
M

B
]

(l
o
g

 s
ca

le
)

Memory Footprint

MACs / Memory

Fig. 1 Comparison of Memory footprint and (Multiply-and-Accumulate operations vs. memory)
ratio (MACs/Memory) between the LeNet [15], AlexNet [14], and CapsNet [36] (based on the data
presented in [20]).

metric to show the computational complexity of the models, thus demonstrating the
higher compute-intensive nature of CapsNets, compared to traditional DNNs.

In this chapter, after discussing the differences between traditional DNNs and
CapsNets, and their advanced model architectures, we present the state-of-the-art
methodologies and optimization techniques for their efficient execution. An overview
of the chapter’s content is shown in Figure 2.

CapsNets
Training

Methodologies

HW-Aware
Neural

Architecture
Search

CapsNet HW
Accelerator
(CapsAcc)

DSE of PE Array DSE of
Memory

Organizations

CapsNets
Quantization
Framework

Approximate
CapsNets

Design

CapsNet
Models

Datasets

Efficient
Trained
CapsNet
Models

Efficient
CapsNets
Inference

SW-Level HW-Level

HW/SW Co-Design & Optimizations

Fig. 2 Overview of the chapter’s content.

2 Traditional DNNs vs. CapsNets

As discussed in [11], among the major drawbacks of traditional DNNs, which are
based on convolutional operations, (i) they have too few structural levels, thus they
cannot handle different viewpoints of the same object, and (ii) pooling layers are too
naive forms of information encoding, since they make DNNs translation-invariant,
rather than equivariant. To overcome these problems, the architecture of CapsNets
is proposed. The key differences w.r.t. traditional DNNs are summarized in Table 1.

Inspired by the concept of inverse graphics, in [11] the neurons are grouped
together into vectors to form the so-called capsules. A capsule encodes both the

4 A. Marchisio et al.

Table 1 Key differences between traditional DNNs and CapsNets.

Traditional DNNs CapsNets

Basic Block Neuron (scalar value) Capsule (vector)

Activation Function Rectified Linear Unit (ReLU) Squash

Inter-Layer Connections Pooling Dynamic Routing

Detection Property Feature Detection Entity Detection

instantiation parameters (i.e., pose, like width, skew, rotation, and other spatial
information), and its length (i.e., its Euclidean Norm) is associated with the
instantiation probability of the entity. In this way, the CapsNets from the image
pixels encode the pose of low-level features, and from the pose of the “parts”, it is
possible to understand the pose of the “whole”, i.e., the high-level entities, to make
a better prediction. As activation function, the CapsNets use the Squash, which is
a multidimensional non-linear function that efficiently fits the prediction vector that
forms the capsule.

Moreover, to overcome the problem that DNNs are not invariant to translation, the
concept of routing is introduced. The (Max) Pooling operation consists of collecting
a group of adjacent neurons and selecting the one with the highest activity, thus
discarding the spatial information provided by this group of neurons. For this reason,
the pooling layers are responsible for the so-called Picasso problem, in which DNNs
classify an image having a nose below the mouth and an eye below the nose as a face,
since they lose spatial relationships between features. To replace the pooling layers,
an iterative routing procedure to determine the values of the coupling coefficients
between a low-level capsule to higher-level capsules is proposed in [36]. It is an
iterative process in which the agreements between the capsules of two consecutive
layers are measured and updated for a certain number of iterations at runtime during
the inference.

3 CapsNet Models and Applications

Hinton et al. [11] first showed the applicability of CapsNets, which adopt the capsules
as basic blocks and can learn the features of an image in addition to its deformations
and viewing conditions. A more detailed explanation of how poses and probabilities
are represented and computed to form a CapsNet is described in [36]. A capsule is
a vector of neurons, each representing an instantiation parameter of the entity, and
the instantiation probability is measured by the length of the vector. To represent
such probability in the range {0, 1}, the Squash function is employed. The iterative
procedure for computing the coupling coefficients 𝑐𝑖 𝑗 constitutes the Dynamic
Routing-by-Agreement in Algorithm 1. The coupling coefficient determines in which
amount the lower-level capsule 𝑖 sends its activation to all the higher-level capsules.

Hardware and Software Optimizations for Capsule Networks 5

Algorithm 1: Dynamic Routing-by-Agreement in CapsNets.
Input: Prediction Votes �̂�𝑖 | 𝑗 ; Number of Iterations 𝑟 ; Layer 𝑙
Output: Activation Vectors 𝑣 𝑗

1 for Capsule 𝑖 in Layer 𝑙 do
2 for Capsule 𝑗 in Layer (𝑙 + 1) do
3 Logits Initialization: 𝑏𝑖 𝑗 ← 0;
4 end
5 end
6 for 𝑟 Iterations do
7 for Capsule 𝑖 in Layer 𝑙 do
8 Softmax: 𝑐𝑖 𝑗 ← softmax (𝑏𝑖 𝑗) = 𝑒

𝑏𝑖 𝑗∑
𝑘 𝑒

𝑏𝑖𝑘
;

9 end
10 for Capsule 𝑗 in Layer (𝑙 + 1) do
11 Sum: 𝑠 𝑗 ←

∑
𝑖 𝑐𝑖 𝑗 · �̂�𝑖 | 𝑗 ;

12 end
13 for Capsule 𝑗 in Layer (𝑙 + 1) do
14 Squash: 𝑣 𝑗 ← squash (𝑠 𝑗) =

| |𝑠 𝑗 | |2
1+||𝑠 𝑗 | |2

𝑠 𝑗

| |𝑠 𝑗 | | ;
15 end
16 for Capsule 𝑖 in Layer 𝑙 do
17 for Capsule 𝑗 in Layer (𝑙 + 1) do
18 Update: 𝑏𝑖 𝑗 ← 𝑏𝑖 𝑗 + �̂�𝑖 | 𝑗 · 𝑣 𝑗 ;
19 end
20 end
21 end

In other words, 𝑐𝑖 𝑗 represents the prior probability that an entity detected by a
lower-level capsule 𝑖 belongs to the higher-level entity of capsule 𝑗 . To satisfy the
property that the sum of these coefficients must be unitary, the Softmax function is
applied (see line 8 of Algorithm 1). The activation 𝑣 𝑗 of the capsule 𝑗 is obtained by
applying the Squash function to the pre-activation 𝑠 𝑗 (line 14). The last step consists
of updating the logits 𝑏𝑖 𝑗 to be used in the following iteration by computing the
agreement through the scalar product between the input prediction votes �̂�𝑖 | 𝑗 and the
activation 𝑣 𝑗 (line 18).

The first CapsNet model [36] using the vector capsules and the dynamic routing
is shown in Figure 3. A convolutional layer with kernel 9×9, stride 1 and 256 output
channels is followed by the PrimaryCaps layer, in which the neurons are grouped
into 8𝐷 vectors, organized in 32 output channels, and form a convolutional capsule
layer of kernel size 9 × 9 and stride 2, using the Squash activation function. In the
last ClassCaps layer, each of the 10 capsules is dedicated to recognizing the output
classes. The Dynamic Routing analyzes the features encoded by the 1152 8𝐷 capsules
of the PrimaryCaps layer to generate the 10 16𝐷 activations of the ClassCaps layer.
For training purposes, a decoder network (i.e., a cascade of three fully-connected
layers) is built for obtaining the image reconstruction, and then employing the
reconstruction loss along with the margin loss (i.e., computed from the instantiation
probabilities of the output activations) to form the loss function. Despite being

6 A. Marchisio et al.

PrimaryCaps
Layer

Squash
ClassCaps
Layer

Conv1
Layer

ReLU
Dynamic
Routing

INPUT OUTPUT

28x28

9x9 9x920x20x256 6x6x32x8 16x10

oooooooooooooooo

Fig. 3 Architectural model of the vanilla CapsNet [36].

applied mainly to relatively simple tasks, like MNIST [15] and Fashion-MNIST [40]
classification, this architecture has been extensively analyzed and studied by the
community. Hence, in the following, we consider it as vanilla CapsNet, or simply
CapsNet.

A major limitation of this CapsNet is that it is extremely compute-intense and
requires many parameters to reach similar performances as traditional DNNs for
complex tasks. To overcome these issues, the DeepCaps architecture [35] has been
proposed. As shown in Figure 4, besides increasing the depth, the DeepCaps exploits
3D convolutional capsule layers and 3D dynamic routing, thus significantly reducing
the number of parameters. Moreover, the decoder employs deconvolutional layers
that capture more spatial relationships than the fully-connected layers.

C
O

N
V

C
A

P
S

2
D

 #
1

C
O

N
V

C
A

P
S

2
D

 #
2

C
O

N
V

C
A

P
S

2
D

 #
3

CONVCAPS 2D #4

+

C
O

N
V

C
A

P
S

2
D

 #
5

C
O

N
V

C
A

P
S

2
D

 #
6

C
O

N
V

C
A

P
S

2
D

 #
7

CONVCAPS 2D #8

+

C
O

N
V

C
A

P
S

2
D

 #
9

C
O

N
V

C
A

P
S

2
D

 #
1

0

C
O

N
V

C
A

P
S

2
D

 #
1

1

CONVCAPS 2D #12

+

C
O

N
V

C
A

P
S

2
D

 #
1

3

C
O

N
V

C
A

P
S

2
D

 #
1

4

C
O

N
V

C
A

P
S

2
D

 #
1

5

CONVCAPS 3D

+

C
O

N
V

C
LA

SS
C

A
P

S

IN
P

U
T

O
U

TP
U

T

Squash Dynamic RoutingReLU

Fig. 4 Architectural model of the DeepCaps [35].

Concurrently, other modifications of the vanilla CapsNets have been proposed.
Instead of using vector capsules, Hinton et al. [12] proposed the representation
of capsules’ inputs and outputs as matrices and replaced the dynamic routing-by-
agreement with the expectation-maximization (EM) algorithm. The EM routing
is a clustering process based on the Gaussian mixture model. Compared to the
dynamic routing it improves the sensitivity of small coupling differences for
values close to 1, but implies higher computational time and complexity. Inspired
by recent research advancements on transformers, Choi et al. [4] proposed the
attention routing and capsule activation, while Hahn et al. [8] proposed self-routing
CapsNets, in which the values of the coupling coefficients are learned during training.
Other promising CapsNet architectures introduced different variants of the routing
algorithm, including the inverted dot-product (IDP) attention routing [38], the self-
attention routing [28], and the straight-through (ST) attentive routing [2]. The key
features of the different routing methods are summarized in Table 2.

Hardware and Software Optimizations for Capsule Networks 7

Table 2 An overview of the most common versions of the routing algorithm for CapsNets.

Routing Method Reference Short Description Benefits Potential Limitations

Dynamic
Routing [36] Coupling agreement computed based on

cosine similarity, normalized by squash
Dynamic update with

multiple iterations
Low sensitivity for
values close to 1

EM
Routing [12] Clustering-based algorithm where the

agreements follow a Gaussian distribution
Overcomes the dynamic

routing limitation
High computational

expensive

Attention
Routing [4] Coupling coefficients computed

with an attention module
Only forward
computations

Use high-complex
capsule activations

Self-Routing [8]
Each capsule is routed independently

by its subordinate routing network
(non-iterative procedure)

Competitive robustness
performance and

viewpoint generalization

Scalability issues
and high

computational cost

IDP Attention
Routing [38]

Coefficients computed through an IDP
mechanism between high-level capsule

states and low-level capsule votes

Fast computations
using a concurrent
iterative procedure

Memory-intense
and complex

backbone needed

Self-Attention
Routing [28] Capsules between subsequent layers are

routed with a self-attention mechanism
Competitive performance

with few parameters
Low accuracy for

complex tasks

ST Attentive
Routing [2]

Connection between high-level and
low-level capsules based on binary

decision with a straight-through estimator

Differentiability of
computations and high
accuracy on ImageNet

High number of
parameters and high

training time

4 Efficient CapsNets Training Methodologies

State-of-the-art learning policies for traditional DNNs are designed to tune the
learning rate and batch size values during different training epochs to achieve high
accuracy and fast training time. Compared to the baseline policy in which the learning
rate is exponentially decreasing and the batch size is kept constant during training,
the most popular learning policies include:

• One-Cycle Policy [37]: This technique applies a single cycle of learning rate
variation. The training is conducted in three phases. In phase-1 (for the first 45%
of training epochs), the learning rate is increased from a minimum to a maximum
value. In phase-2 (for other 45% of epochs), the learning rate is decreased in a
symmetric way. In phase-3 (for the last 10% of epochs, the learning rate is further
decreased.

• Warm Restarts [17]: The learning rate is initialized to a maximum value and
cyclically decreased with cosine annealing to a minimum value and then reset to
its maximum with a step function. The cyclic repetition of this process emulates
a warm restart that allows the model to traverse several saddle points and local
minima to obtain fast convergence.

• Adaptive Batch Size (AdaBatch) [6]: Since small batch sizes typically imply
the convergence in few training epochs, while large batch sizes guarantee high
computational efficiency due to high parallel processing in GPU clusters, a good
trade-off consists of adaptively increasing the batch size during training. Starting
with a small batch size allows fast convergence in early epochs, and progressively
increasing the batch size at selected epochs improves the performance due to the
larger workload available per processor in later epochs.

8 A. Marchisio et al.

The FasTrCaps framework [18] combines the above-discussed techniques and
other optimization strategies for efficiently training the CapsNets. As shown in
Figure 5, the methodology is composed of three steps. First, the learning rate policies
are tailored and applied to CapsNets. Then, the adaptive batch size is selected. Among
the explored learning rate policies, the Warm Restarts guarantees the most promising
results in terms of accuracy, while the AdaBatch provides a good trade-off to obtain
fast convergence. Combining these two techniques, a novel learning policy called
WarmAdaBatch is designed.

Step 1:
Learning Rate Policies

Step 3: CapsNet Complexity Reduction

WarmAdaBatch:
WR + AdaBatch

…

Step 2:
Batch Size Selection:
Adaptive Batch Size,

Variation for
Different Epochs

Reduced-Sized
Decoder

Weight Sharing

O
u

tp
u

t:
O

p
ti

m
iz

ed
C

ap
sN

et

C
ap

sN
et

FasTrCaps Framework

Warm Restarts (WR)

Fig. 5 Overview of the FasTrCaps framework’s functionality [18].

The WarmAdaBatch method, shown in Algorithm 2, is a hybrid learning policy
that combines the variations of the learning rate and the batch size. For the first three
epochs, the batch size is set to 1, then it is increased to 16 for the remaining training
epochs. The first cycle of the warm restarts policy is done during the first three
epochs, and the second one during the remaining training epochs. For completeness,
the procedures describing the AdaBatch and Warm Restarts methods are shown in
lines 15 to 25 and 26 to 34 of Algorithm 2, respectively.

In the third step, the computational complexity is reduced by performing two
optimizations. (i) The size of the CapsNet decoder is reduced by around 5%,
maintaining only the 1 × 16 inputs linked to the capsule that outputs the highest
probability. (ii) The weights between the PrimaryCaps and ClassCaps layers are
shared by having a single weight tensor associated with all the 8D vectors inside
each 6 × 6 capsule, achieving more than 15% reduction in the total number of
parameters.

The evaluation is conducted on the CapsNet [36] for the MNIST [15] and Fashion-
MNIST [40] datasets. Table 3 shows the key results employing the WarmAdaBatch
and Weight Sharing. The accuracy values are computed by averaging 5 training
runs, each of them lasting for 30 epochs. For the MNIST dataset, the accuracy
drop caused by the Weight Sharing is compensated by the WarmAdaBatch. The
combination of both techniques results in a slightly higher accuracy (99.38% vs.
99.37% of the baseline), with fewer training epochs. For the Fashion-MNIST dataset,

Hardware and Software Optimizations for Capsule Networks 9

Algorithm 2: WarmAdaBatch training method for CapsNets.
1 Procedure WarmAdaBatch(𝑙𝑟𝑚𝑖𝑛, 𝑙𝑟𝑚𝑎𝑥 , 𝑀𝑎𝑥𝐸𝑝𝑜𝑐ℎ, 𝑀𝑎𝑥𝑆𝑡𝑒𝑝)
2 𝑇𝑐𝑢𝑟𝑟 ← 0;
3 for 𝐸𝑝𝑜𝑐ℎ ∈ {1, ..., 𝑀𝑎𝑥𝐸𝑝𝑜𝑐ℎ} do // Batch size update
4 AdaBatch(4,Epoch);
5 if 𝐸𝑝𝑜𝑐ℎ ≤ 3 then
6 𝑇𝑖 ← 3 ∗ 60, 000; // Steps in 3 epochs with batch size 1
7 else
8 𝑇𝑖 ← 27 ∗ 3, 750; // Steps in 27 epochs with batch size 16
9 end

10 for 𝑆𝑡𝑒𝑝 ∈ {1, ..., 𝑀𝑎𝑥𝑆𝑡𝑒𝑝} do // Learning Rate update
11 𝑇𝑐𝑢𝑟𝑟 ←𝑊𝑅 (𝑙𝑟𝑚𝑖𝑛 , 𝑙𝑟𝑚𝑎𝑥 , 𝑇𝑐𝑢𝑟𝑟 , 𝑇𝑖);
12 end
13 end
14 end
15 Procedure AdaBatch(𝑃, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑝𝑜𝑐ℎ)
16 if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑝𝑜𝑐ℎ ≤ 3 then
17 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒← 1;
18 else if 4 ≤ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑝𝑜𝑐ℎ ≤ 8 then
19 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒← 2𝑃 ;
20 else if 9 ≤ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑝𝑜𝑐ℎ ≤ 13 then
21 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒← 2𝑃+1;
22 else
23 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒← 2𝑃+2;
24 end
25 end
26 Procedure WarmRestarts(𝑙𝑟𝑚𝑖𝑛 , 𝑙𝑟𝑚𝑎𝑥 , 𝑇𝑐𝑢𝑟𝑟 , 𝑇𝑖)

27 𝑙𝑟 ← 𝑙𝑟𝑚𝑖𝑛 + 1
2 (𝑙𝑟𝑚𝑎𝑥 − 𝑙𝑟𝑚𝑖𝑛)

(
1 + cos 𝜋 𝑇𝑐𝑢𝑟𝑟

𝑇𝑖

)
; // Learning rate update

28 if 𝑇𝑐𝑢𝑟𝑟 = 𝑇𝑖 then // Warm Restart after 𝑇𝑖 training steps
29 𝑇𝑐𝑢𝑟𝑟 ← 0;
30 else // Current step update
31 𝑇𝑐𝑢𝑟𝑟 ← 𝑇𝑐𝑢𝑟𝑟 + 1;
32 end
33 return 𝑇𝑐𝑢𝑟𝑟 ;
34 end

despite requiring slightly more training epochs than the baseline, the combination of
WarmAdaBatch and Weight Sharing shows comparable accuracy w.r.t. the baseline.

5 Hardware Architectures for Accelerating CapsNets’ Inference

For deploying CapsNets-based systems at the edge, it is crucial to minimize the
power/energy consumption and maximize the performance. The unique operations
involving capsules, Squash, and the dynamic routing make the existing architectures
for accelerating traditional DNNs unsuitable or inefficient. Therefore, specialized
architectures and dataflows need to be designed and tailored for CapsNets. A

10 A. Marchisio et al.

Table 3 Accuracy results obtained with CapsNet for the MNIST and Fashion-MNIST datasets,
applying different solutions using the FasTrCaps framework [18].

Accuracy Epochs to reach
max accuracy Learning Rate

and Batch Size
Weight
SharingFashionMNIST MNIST FashionMNIST MNIST

90.99% 99.37% 17 29 Baseline No
91.47% 99.45% 27 8 WarmAdaBatch No
90.47% 99.26% 17 26 Baseline Yes
90.67% 99.38% 20 11 WarmAdaBatch Yes

performance analysis of the CapsNets execution is beneficial for identifying the
bottlenecks. The rest of the section discusses CapsAcc [22], which is the first
accelerator architecture for CapsNets, the FEECA methodology [26] for exploring the
design space of the computational units of CapsNets accelerators, and the DESCNet
methodology [25] for conducting design-space exploration of CapsNets memory
units.

5.1 CapsNets Execution on GPUs and their Bottlenecks

To understand how the CapsNets’ inference is performed, we perform a
comprehensive analysis to measure the performance of the PyTorch-based
CapsNet [36] implementation for the MNIST dataset on the NVIDIA GeForce
RTX 2080 Ti GPU. Figure 6a shows the execution time breakdown for each layer.
The ClassCaps layer is the bottleneck since it is around 10 − 20× slower than the
previous layers, despite counting fewer parameters than the PrimaryCaps layer. To
obtain more detailed results, the execution time for each operation of the dynamic
routing in the ClassCaps layer is analyzed and reported in Figure 6b. From the
results, it is clear that the most compute-intensive operation is the Squash inside
the ClassCaps layer. Hence, these analyses motivate the design of the hardware
architecture and dataflow that efficiently computes the Squash and dynamic routing.

(a) (b)

Longest time:
ClassCaps Layer

Longest time:
Squash operation

Fig. 6 Execution time breakdown of the CapsNet [18] on the Nvidia GeForce RTX 2080 Ti GPU.
(a) Layer-wise breakdown. (b) Operations in the dynamic routing.

Hardware and Software Optimizations for Capsule Networks 11

5.2 The CapsAcc Accelerator

The top-level architecture of the CapsAcc accelerator is shown in Figure 7a. The
core of the computations is conducted in the Processing Element (PE) Array for
efficiently computing the operations between matrices. The inputs are propagated
towards the output of the PE array both horizontally (data) and vertically (weight and
partial sum). Each PE, shown in Figure 7b, consists of a Multiply-and-Accumulate
(MAC) unit, and four registers to synchronize the weight and data transfers, and
partial sum results at each clock cycle. The Weight2 Register allows to store and
use the same weight on different data for convolutional layer operations, while for
fully-connected operations, only one cycle latency overhead is introduced without
affecting the throughput. The 8-bit data is multiplied with the 8-bit weight to form a
16-bit product, which is accumulated with the previous partial sum using 25 bits to
avoid overflow.

PE PE

PE PE

…

…
… …

Accumulator

Activation

Weight
Memory

Weight
Buffer

Routing
Buffer

Control
Unit

Data Memory

Data Buffer
16x16

PE Array

/

8

/
8

/

//

/

/

8

8

8 8

/ 25 25

/
8

Weight1

Register

Weight2

Register

Partial Sum
Register

D
at

a
R

eg
is

te
r

+x

Weight Partial Sum

D
at

a

Weight

D
at

a

Partial Sum

PE

/
8

25

/

/
16

/

8

/

25

(a) (b)

Fig. 7 Hardware architecture of the CapsAcc accelerator [22]. (a) Complete accelerator
architecture. (b) Architecture of a Processing Element (PE).

The resulting partial sums coming from the PE array are stored in an accumulator,
followed by the activation unit, which can selectively perform the ReLU, Squash,
normalization, or Softmax. More details on the implementations of these units are
discussed in [22]. At each stage of the inference process, the control unit generates
the control signals for all the components of the accelerator architecture.

The memory is organized such that all the weights for each operation are stored
in the on-chip weight memory, while the input data, which correspond to the pixel
intensities of the image, are stored in the on-chip data memory. The data buffer and
weight buffer work as cushions for the interface with the PE array at a high access
rate. Moreover, the accumulator unit contains a buffer for storing the output partial
sums, and the routing buffer stores the coefficients of the dynamic routing. The
multiplexers at the input of the PE array are used to handle the different dataflows
for each operation. To maximize the data reuse, the routing buffer stores the values
of the coupling coefficients across different iterations of the dynamic routing.

12 A. Marchisio et al.

The complete CapsAcc architecture has been implemented in RTL (VHDL) and
synthesized in a 45-nm CMOS technology node using the ASIC design flow with
the Synopsys Design Compiler (see the parameters in Table 4). The gate-level
simulations conducted using Mentor ModelSim are conducted to obtain precise
area, power, and performance of our design. Table 5 reports the detailed area and
power breakdown, showing that the contributions are dominated by the buffers.

Table 4 Parameters of the
synthesized CapsAcc.

Tech. node [nm] 45

Voltage [V] 1

Area [mm2] 2.60

Power [mW] 427.44

Clk Freq. [MHz] 250

Bit width 8

On-Chip Mem. [MB] 8

Area [mm2] 2.60

Power [mW] 427.44

Table 5 Area and power, for the different components
of the CapsAcc architecture.

Component Area [µm2] Power [mW]

PE Array 42 867 112.31

Accumulator 32 641 47.57

Activation 29 027 2.21

Data Buffer 136 222 199.31

Routing Buffer 32 598 47.56

Weight Buffer 11 961 17.46

Other 4 330 1.10

5.3 FEECA Methodology

The CapsAcc architecture represents a specific design solution for accelerating the
CapsNets’ inference. For systematically exploring the design space of CapsNets
accelerators, the FEECA methodology [26] can be employed. As shown in Figure 8,
its goal is to find Pareto-optimal sets of architectural parameters of the CapsNet
accelerator to achieve good trade-offs between the design objectives, which are area,
energy, and performance in terms of inference delay. Given a set of configurable
parameters, the area, power, and energy of the PE arrays and the memories are
computed through Synopsys Design Compiler and CACTI [16], respectively. The
evaluation of each candidate solution is based on the model extraction of the CapsAcc
accelerator [22] for the CapsNet [36]. For searching in the space of the solutions,
the straightforward approach is to use brute force, but for reducing the exploration
time, a heuristic multi-objective optimization approach based on the principles of
the NSGA-II genetic algorithm [5] is used. It is an iterative algorithm that combines
crossover and mutation to explore the solutions, which are progressively selected
based on the Pareto frontiers.

Hardware and Software Optimizations for Capsule Networks 13

Configurable Parameters:
#ROWS of the PE array ∈ [1, 50]
#COLS of the PE array ∈ [1, 50]
Pipeline stages nstg ∈ {1, 2}
Clock period T ∈ {2, 3, 4}
Input pairs (weight+data) npe ∈ [1, 200]
Memory Bandwidth membw ∈ {28, 29, 210}

Design Objectives:
Energy-Delay, Area-Delay,

Area-Energy-Delay

Input
CapsNet

Output:
Set of Pareto-Optimal

Configurations

CapsAcc
Accelerator

Models
Extraction

Evaluation:
Area,

Energy,
Delay

Area
Power
EnergyMemory

Generator

PE Array
Generator

Design
Compiler

CACTI

Search Algorithm:
Brute-force or

NSGA-II

BSP Pareto

Fig. 8 Overview of the FEECA methodology [26] for the design-space exploration of CapsNets
accelerators.

Figure 9 shows the set of Pareto-optimal solutions that form the output of the
FEECA methodology. For visualization purposes, the results are visualized in 2D
plots, where each couple of two objectives is combined into products, which are
energy × delay (EDP), area × delay (ADP), and energy × area (EAP), respectively.
By reducing the dimension of the space, only a smaller number of solutions remain
in the Pareto-frontiers, which are represented by the gray lines. The highlighted
lowest-delay solution (i.e., the fastest architecture) lays on the Pareto-frontier only
in the last two plots, i.e., the ADP vs. energy and EAP vs. delay trade-offs, while it
is not Pareto-optimal for the other case of EDP vs. area.

Lowest-Delay
solution outside
the Pareto-front

Energy-Delay
Product [mJ·s]

Area-Delay
Product [µm2·s]

Energy-Area
Product [mJ ·µm2]

Lowest-Delay

Lowest-Delay

A
re

a
[µ

m
2
]

En
er

gy
 [

m
J]

D
el

ay
 [

s]

Fig. 9 Pareto-optimal set of configurations of CapsNet accelerator generated with the FEECA
methodology [26].

14 A. Marchisio et al.

5.4 Memory Design and Management for CapsNets

Motivated by the results previously discussed in Table 5 that shows that the on-chip
area and power consumption of the complete CapsNet accelerator are dominated by
the memory buffers, a specialized scratchpad memory organization (DESCNet [25])
is designed. The architectural view in Figure 10 shows that the DESCNet memory is
connected to the off-chip memory and the CapsNet accelerator through dedicated bus
lines. The scratchpad memory is partitioned into banks, where each bank consists
of equally sized sectors. All sectors with the same index across different banks are
connected through a power-gating circuitry implemented with sleep transistors to
support an efficient sector-level power-management control at the cost of a certain
area overhead. The application-driven memory power management unit determines
the appropriate control signals for the sleep transistors.

M
em

or
y

C
on

tro
lle

r

Sector1
Sleep

Transistor

Sleep
Transistor

Sleep
Transistor

Bank1 Bank2 Bankn VDD
Ap

pl
ic

at
io

n-
D

riv
en

Po
w

er
 M

an
ag

em
en

t o
f

th
e

O
n-

C
hi

p
M

em
or

y

Sector2

Sectors

PE PE

PE PE

PE

PE

PE PE PE

Activation
Unit (ReLU,

Softmax,
Squash)

CapsAcc Architecture

DESCNet: On-Chip Scratchpad Memory

Control Unit

CPU

D
M

A

On-Chip

Off-Chip
Memory
(DRAM)

Fig. 10 Architectural view of the complete accelerator for CapsNets’ inference, with a focus on the
DESCNet scratchpad memory [25].

This memory model can be generalized for different memory organizations
supporting different sizes and levels of parallelism, including multiport memories.
Toward this, the following design options are analyzed:

1. Shared Multiport Memory (SMP): A shared on-chip memory with three ports for
parallelized access to the weights, input data, and the accumulator’s storage.

2. Separated Memory (SEP): Weights, input data, and partial sums are stored in
three separate on-chip memories.

Hardware and Software Optimizations for Capsule Networks 15

3. Hybrid Memory (HY): A combination of the other two design options, i.e., an
SMP coupled with a SEP memory.

Given the different memory organizations, sizes, number of banks, and sectors
per bank, a design space exploration is conducted. The flow of the DESCNet design
space exploration methodology is shown in Figure 11. For each design option, the
values of memory organization (i.e., the size and number of banks and sectors), the
energy consumption, and area are generated. Given as input the CapsNet model and
hardware accelerator, the memory usage and memory accesses for each operation
of the CapsNet inference are extracted. Then, the analyzer collects the statistics for
each configuration, and the design space is explored. The memory area and energy
consumption estimations, with and without the power-gating option, are conducted
through the CACTI-P tool [16].

…
❑ Accumulator Size
❑ Data Reads
❑ Data Writes
❑ …

Squash
❑ Accumulator Size
❑ Data Reads
❑ Data Writes
❑ …

PrimaryCaps
❑ Accumulator Size
❑ Data Reads
❑ Data Writes
❑ …

CapsNet Hardware
Accelerator

❑ CapsAcc
❑ …

Extract
Operation-Wise
Memory Usage

CapsNet Models
❑ CapsNet
❑ DeepCaps
❑ …

1

ConvCaps2D
❑ Data Reads
❑ Data Writes
❑ Accumulator Size
❑ …

ANALYZER

Design Options,

Sizes, Number of
Banks and Sectors

2

DESIGN SPACE EXPLORATION

Optimizations of Memory
Configurations and Sizes

3

CACTI-P

Memory Modeling

Memory Organization, Energy Consumption, Area

SYNOPSYS-DC
(45 nm Technology)

PE Array Synthesis

Fig. 11 DESCNet [25] methodology and toolflow for conducting the design space exploration.

The different memory architectural options has been evaluated for area and
energy consumption. Figure 12a shows the 15 233 different DESCNet architectural
configurations for the CapsNet [36] on the MNIST dataset [15], while Figure 12b
shows the 215 693 configurations for the DeepCaps [35] on the CIFAR10 dataset [13].

For each design option (SMP, SEP, and HY) and its corresponding version
with power-gating (with the suffix -PG), the Pareto-optimal solutions with the
lowest energy are highlighted. Note that while SEP, SEP-PG, and HY-PG belong
to the Pareto-frontier, HY, SMP, and SMP-PG are dominated by other memory
configurations. Using these optimizations, it is possible to achieve up to 80%
energy saving and up to 47% area saving compared to the memory organization
of CapsAcc [22].

16 A. Marchisio et al.

(a) CapsNet - MNIST (b) DeepCaps – CIFAR10

Lowest-energy:
SEP-PG

Lowest-energy:
HY-PG

Fig. 12 Design space exploration of the DESCNet memory configurations [25]. (a) Results for the
CapsNet on the MNIST dataset. (b) Results for the DeepCaps on the CIFAR10 dataset.

6 Lightweight Optimizations for CapsNets Inference

To further ease the deployment of CapsNets at the edge, other lightweight
optimizations can be conducted. A reduction of the wordlength of the weights
and activations of a CapsNet for computing the inference not only lightens the
memory storage requirements, but might also have a significant impact on the
energy consumption of the computational units. Moreover, the current trends in
approximate computing can be leveraged to approximate the most compute-intensive
operations, such as the multiplications, achieve energy-efficient CapsNet hardware
architectures, and enable design-/run-time energy-quality trade-offs.

6.1 Quantization of CapsNets with the Q-CapsNets Framework

Despite the considerable energy savings, having a too short wordlength implies
lowering the accuracy of the CapsNets, which is typically an undesired outcome
from the end-user perspective. To find efficient trade-offs between the memory
footprint, the energy consumption, and the classification accuracy, The Q-CapsNets
framewok [19] is applied. As shown in Figure 13, it explores different layer-wise
and operation-wise arithmetic precisions for obtaining the quantized version of
a given CapsNet. It tackles in particular the dynamic routing, which is a peculiar
feature of the CapsNets involving complex and computationally expensive operations
performed iteratively, with a significant impact on the energy consumption. Given
the CapsNet model architecture, together with the training and test dataset, and a
set of user constraints such as the accuracy tolerance, the memory budget, and the
rounding schemes, the Q-CapsNets framework progressively reduces the numerical
precision of the data (e.g., weights and activations) in the CapsNet inference, aiming
at satisfying both requirements on accuracy and memory usage.

A step-by-step description of the framework is the following:

1) Layer-Uniform Quantization (weights + activations): All the weights and
activations are converted to fixed-point arithmetic, with 1-bit integer part, and𝑄𝑤-

Hardware and Software Optimizations for Capsule Networks 17

CapsNet Models:
(FP32 Training)

CapsNet
DeepCaps

…

Dataset:
MNIST

CIFAR10
…

Settings:
Accuracy tolerance

Memory budget
Rounding schemes

Q-CapsNets Framework

Outputs:
Quantized

CapsNet Models:

model_satisfied
model_memory
model_accuracy

Fig. 13 Flow of the Q-CapsNets framework [19].

bit and 𝑄𝑎-bit fractional part, respectively. Afterward, their precision is further
reduced in a uniform way (e.g., 𝑄𝑤 = 𝑄𝑎).

2) Memory Requirements Fulfillment: In this stage, only the CapsNet weights are
quantized. Since the perturbations to weights in the final layers can be more costly
than perturbations in the earlier layers, for each layer 𝑙 its respective𝑄𝑤 is set such
that (𝑄𝑤)𝑙+1 = (𝑄𝑤)𝑙 − 1. Having defined these conditions, the model_memory
is obtained, having the correct 𝑄𝑤 computed as the maximum integer value such
that the sum of the weight memory occupied by each layer is lower than the
memory budget. Afterward, if the accuracy of the model_memory is higher than
the target accuracy, it continues to (3A) for further quantization steps. Otherwise,
it jumps to (3B).

3A) Layer-Wise quantization of activations: The activations are quantized in a layer-
wise fashion. Progressively, each layer of the CapsNet (except the first one) is
selected, and𝑄𝑎 of the current layer is lowered until the minimum value for which
the accuracy remains higher than the target accuracy. This step repeats iteratively
until the 𝑄𝑎 for the last layer is set. Afterward, it continues to (4A).

3B) Layer-Uniform ad Layer-Wise Quantization of Weights: Starting from the
outcome of step (1), only the weights are quantized, first in a uniform and then
in a layer-wise manner (as in step 3A) until reaching the target accuracy. The
resulting CapsNet model (model_accuracy) is returned as another output of the
framework.

4A) Dynamic Routing Quantization: Due to the computationally expensive
operations, such as Squash and Softmax, the wordlength of the dynamic routing
tensors may be different as compared to other layers of the CapsNet. Therefore, a
specialized quantization process is performed in this step, in which the operators
of the dynamic routing can be quantized more than the other activations (i.e.,
with a wordlength lower than 𝑄𝑎, which we call 𝑄𝐷𝑅). The quantized CapsNet
model generated at the end of this step is denoted as model_satisfied.

18 A. Marchisio et al.

Some key results of the Q-CapsNets framework implemented in PyTorch [33]
and tested on the CapsNet [36] and DeepCaps [35] models for MNIST [15],
Fashion-MNIST [40] and CIFAR10 [13] datasets are shown in Table 6. An efficient
model_satisfied for the CapsNet on the MNIST dataset achieves 4.87× weight
memory reduction with only 0.09% accuracy loss compared to the baseline. Even
larger memory reductions (up to 7.51× weight and 6.45× activation memory
reduction) can be obtained for the DeepCaps, with less than 0.15% accuracy loss.
Note that the wordlength for the dynamic routing operations can be reduced up to 3
or 4 bits with very little accuracy loss compared to the full-precision model. Such
an outcome is attributed to the fact that the operations of the involved coefficients
(along with Squash and Softmax) are updated dynamically, thereby tolerating a more
aggressive quantization compared to previous layers.

Table 6 Q-CapsNet’s accuracy results, weight (W) memory and activation (A) memory reduction
for the CapsNets and for the DeepCaps on the MNIST, Fashion-MNIST and CIFAR10 datasets [19].

Model Dataset Accuracy W mem reduction A mem reduction

CapsNet MNIST 99.58% 4.87× 2.67×

CapsNet MNIST 99.49% 2.02× 2.74×

CapsNet FMNIST 92.76% 4.11× 2.49×

CapsNet FMNIST 78.26% 6.69× 2.46×

DeepCaps MNIST 99.55% 7.51× 4.00×

DeepCaps MNIST 99.60% 4.59× 6.45×

DeepCaps FMNIST 94.93% 6.40× 3.20×

DeepCaps FMNIST 94.92% 4.59× 4.57×

DeepCaps CIFAR10 91.11% 6.15× 2.50×

DeepCaps CIFAR10 91.18% 3.71× 3.34×

6.2 Approximations for energy-Efficient CapsNets with the ReD-CaNe
Methodology

Approximation errors in hardware have been extensively employed to trade off
accuracy for efficiency. Several recent works [9][10][21][32] have studied the
resiliency of traditional DNNs to approximations, showing the possibility to achieve
high energy savings with minimal accuracy loss. For CapsNets, the resiliency
analysis is conducted through the ReD-CaNe methodology [24]. Since the estimated
energy consumption of the multipliers counts for 96% of the total energy share of
the computational path of the DeepCaps inference, the approximate multipliers are
targeted. The ReD-CaNe methodology, shown in Figure 14, provides useful strategies

Hardware and Software Optimizations for Capsule Networks 19

STEP 1: Group Extraction: distinction
based on the type of operation

STEP 2: Group-Wise
Resilience Analysis

Groups of
Operations

STEP 3: Mark Resilient
Groups: when the

accuracy is high

STEP 4: Layer-Wise
Resilience Analysis for
Non-Resilient Groups

STEP 5: Mark Resilient Layers
for Each Non-Resilient Group:

resilient layer designation

Output: Design of
Approximate
CapsNet for

Efficient Inference

ReD-CaNe Methodology

STEP 6: Select
Approximate
Components

Input: CapsNet
Operations

Input: Approx.
Component

Library

Fig. 14 Flow of the ReD-CaNe methodology [24].

for deploying energy-efficient inference, showing the potential to design and apply
approximations to specific CapsNets layers and operations (i.e., the more resilient
ones) without sacrificing the accuracy much.

Since the profiling of the error distributions produced by approximate multipliers
of the EvoApproxSb library [31] shows that the majority of the components have a
Gaussian-like distribution of the arithmetic error, the approximations can be modeled
as a noise injection of a certain magnitude and average. A step-by-step description
of the ReD-CaNe methodology is the following:

1. Group Extraction: The operations of the CapsNet inference are divided into
groups based on the type of operation involved (e.g., MAC, activation function,
Softmax, or logits update). This step generates the Groups.

2. Group-Wise Resilience Analysis: The test accuracy drop is monitored by
injecting noise into different groups.

3. Mark Resilient Groups: Based on the results of the analysis performed in Step
2, the more resilient groups are marked. After this step, there are two categories
of Groups, the Resilient and Non-Resilient ones.

4. Layer-Wise Resilience Analysis for Non-Resilient Groups: For each non-
resilient group, the test accuracy drop is monitored by injecting noise at each
layer.

5. Mark Resilient Layers for Each Non-Resilient Group: Based on the results of
the analysis performed in Step 4, the more resilient layers are marked.

6. Select Approximate Components: For each operation, the approximate
components from a given library are selected based on the resilience measured
as the noise magnitude.

As a case study, the detailed results applied to the DeepCaps for the CIFAR10
dataset are shown in Figure 15. In the experiments for Step 2, the same noise is
injected into every operation within a group, while maintaining the other groups
accurate. As shown in Figure 15a, the Softmax and the logits update groups are
more resilient than MAC outputs and activations, because the DeepCaps accuracy
starts to decrease with a correspondent lower noise magnitude. Note that, for low
noise magnitude, the accuracy slightly increases due to regularization, with a similar
effect as the dropout. Figure 15b shows the resiliency analysis of each layer of the

20 A. Marchisio et al.

#1: MAC outputs

#2: activations

#3: softmax

#4: logits update

Step 3: Mark

Resilient Groups

❑ Softmax

❑ Logits update

Group #1: MAC outputs Group #2: activations

Step 5: Mark

Resilient Layers

❑ ConvCaps3D

❑ ClassCaps

(in the Dynamic Routing)

Least Resilient:

first layer Step 5: Mark

Resilient Layers

❑ ConvCaps3D

❑ ConvCaps2D#4

❑ ConvCaps2D#8

(in the skip layers)

(a) Step 2: Group-Wise Resilience

(b) Step 4: Layer-Wise Resilience

Fig. 15 ReD-CaNe methodology applied to the DeepCaps for the CIFAR10 dataset [24].

non-resilient groups (i.e., MAC outputs and activations). While the first convolutional
layer is the least resilient, the ClassCaps layer and ConvCaps3D layer are the most
resilient ones. Since the latter is the only convolutional layer that employs the dynamic
routing algorithm, the higher resilience is attributed to the dynamic routing iterations,
in which the coefficients are updated dynamically at runtime, thus they can adapt to
the approximation errors. Moreover, among the activations, the most resilient layers
are the ConvCaps3D, ConvCaps2D#4, and ConvCaps2D#8, which are the layers in
the skip connection path of the DeepCaps.

7 HW-Aware Neural Architecture Search for DNNs and
CapsNets

Manually designing CapsNets is a tedious job and incurs challenging efforts. Neural
Architecture Search (NAS) methods automatically select the best model for a given
application task. Moreover, hardware-aware NAS methodologies are employed to
find efficient trade-offs between the accuracy of the models and the efficiency of their
execution on specialized hardware accelerators in IoT-Edge/CPS devices. Toward
this, the NASCaps framework [23] jointly optimizes the network accuracy and its
corresponding hardware efficiency, expressed as energy, memory, and latency of

Hardware and Software Optimizations for Capsule Networks 21

a given hardware accelerator. It supports both the traditional DNN layers and the
CapsNets layers and operations, including the dynamic routing.

The overall functionality and workflow of the NASCaps framework are shown
in Figure 16. As input, the framework receives the configuration of the underlying
hardware accelerator and a given dataset used for training, as well as a collection of
the possible types of layers that can be used to form different candidate DNNs and
CapsNets. The evolutionary search is based on the principles of the multi-objective
iterative genetic NSGA-II algorithm [5]. Analytical models of the execution of
different types of layers and operations in the hardware architecture are developed
to estimate the hardware metrics during the design space exploration quickly. To
further reduce the exploration time, the accuracy of each candidate DNN/CapsNet is
evaluated after a limited number of training epochs, in which the number of epochs
is selected based on the Pearson correlation coefficient [34] w.r.t. the fully-trained
networks. Afterward, the Pareto-frontiers relative to accuracy, energy consumption,
latency, and memory footprint are generated to proceed to the next iteration. At the
end of this selection procedure, the Pareto-optimal DNN solutions are fully-trained
to make an exact accuracy evaluation.

Random DNNs
(initial)

Evaluate

Select P best
individuals

Generate Q offsprings
(crossover, mutation)

U

HW model

Termination
conditions

Extraction of energy,
memory, latency

DNN Training
with Limited

Epochs

Fully-trained
inference

Full training

NSGA-II

DNNs and CapsNets
Layer Library

HW Accelerator

Dataset

Output: Set of
Pareto-optimal

High-Accurate &
HW-Efficient

Convolutional
CapsNets

NASCaps Framework

Fig. 16 Overview of the NASCaps framework’s functionality [23].

The NASCaps framework [23] has been implemented with the TensorFlow
library [1] running on GPU-HPC computing nodes equipped with four NVIDIA Tesla
V100-SXM2 GPUs. A set of case-study experiments for the CIFAR10 dataset [13]
running on the CapsAcc architecture [22] is shown in Figure 17. The maximum
number of generations for the genetic algorithm is set to 20, but a maximum time-
out of 24 hours has been imposed, thus stopping the algorithm at the 14th iteration.
The candidate solutions in the earlier generations in Figure 17a are quite inefficient,
while the networks found in the latest generations outperform the manually-designed
CapsNet and DeepCaps. Note that at this stage of partially-trained networks (i.e., after
10 epochs), some solutions exhibit > 20% accuracy improvements compared to the
DeepCaps. The Pareto-optimal solutions have been fully-trained for 300 epochs, and
the results are shown in Figure 17b. The highlighted solution achieves an accuracy
of 85.99% (about 1% accuracy drop), while reducing the energy consumption by

22 A. Marchisio et al.

Energy [mJ]

Energy [mJ]

(a)

(b)

>20% higher

accuracy w.r.t.

DeepCaps

-52.12%

Energy

-30.19%

Memory

-64.34%

Latency

Fig. 17 NASCaps framework applied to the CIFAR10 dataset, showing the trade-offs between
accuracy, energy, memory footprint, and latency [23]. (a) Partially-trained results. (b) Fully-trained
results.

52.12%, the memory footprint by 30.19%, and the latency by 64.34%, compared to
the DeepCaps inference run on the CapsAcc accelerator.

8 Conclusion

Capsule Networks offer high learning capabilities, which results in high accuracy
in several applications and high robustness against the vulnerability threats which
involve spatial transformations. However, compared to traditional DNNs, the capsule
layers introduce an additional dimension, and the iterative dynamic routing makes
CapsNets high compute-intensive. In this chapter, several optimization techniques
and frameworks tailored for CapsNets have been proposed. The FasTrCaps
framework employs state-of-the-art learning policies and reduces the complexity
of CapsNets for efficient training. CapsNets hardware architectures based on the
CapsAcc inference accelerator are explored with the FEECA methodology, while
the DESCNet methodology optimizes the memory organizations based on the
CapsNets’ workload. The Q-CapsNets framework produces lightweight quantized
CapsNets, and the ReD-CaNe methodology further reduces the energy consumption
by employing approximate multipliers. Moreover, the NASCaps framework enables
hardware-aware capsule-based neural architecture search for jointly optimizing
accuracy, memory, energy, and latency, thus enabling CapsNets deployment in
resource-constrained edge devices.

Hardware and Software Optimizations for Capsule Networks 23

Acknowledgements This work has been supported in part by the Doctoral College Resilient
Embedded Systems, which is run jointly by the TU Wien’s Faculty of Informatics and the UAS
Technikum Wien.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner,
B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: A system
for large-scale machine learning. In: K. Keeton, T. Roscoe (eds.) 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016, pp. 265–283. USENIX Association (2016). URL https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/abadi

2. Ahmed, K., Torresani, L.: Star-caps: Capsule networks with straight-through attentive routing.
In: H.M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.B. Fox, R. Garnett
(eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 9098–9107 (2019). URL https://proceedings.neurips.cc/paper/2019/
hash/cf040fc71060367913e81ac1eb050aea-Abstract.html

3. Capra, M., Bussolino, B., Marchisio, A., Shafique, M., Masera, G., Martina, M.: An updated
survey of efficient hardware architectures for accelerating deep convolutional neural networks.
Future Internet 12(7), 113 (2020). DOI 10.3390/fi12070113. URL https://doi.org/10.
3390/fi12070113

4. Choi, J., Seo, H., Im, S., Kang, M.: Attention routing between capsules. In: 2019 IEEE/CVF
International Conference on Computer Vision Workshops, ICCV Workshops 2019, Seoul,
Korea (South), October 27-28, 2019, pp. 1981–1989. IEEE (2019). DOI 10.1109/ICCVW.
2019.00247. URL https://doi.org/10.1109/ICCVW.2019.00247

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). DOI 10.1109/4235.
996017. URL https://doi.org/10.1109/4235.996017

6. Devarakonda, A., Naumov, M., Garland, M.: Adabatch: Adaptive batch sizes for training deep
neural networks. CoRR abs/1712.02029 (2017). URL http://arxiv.org/abs/1712.
02029

7. Gu, J., Tresp, V.: Improving the robustness of capsule networks to image affine transformations.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pp. 7283–7291. Computer Vision Foundation / IEEE
(2020). DOI 10.1109/CVPR42600.2020.00731. URL https://openaccess.thecvf.com/
content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule\
_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html

8. Hahn, T., Pyeon, M., Kim, G.: Self-routing capsule networks. In: H.M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.B. Fox, R. Garnett (eds.) Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 7656–7665 (2019). URL https://proceedings.neurips.cc/paper/2019/hash/
e46bc064f8e92ac2c404b9871b2a4ef2-Abstract.html

9. Hanif, M.A., Hafiz, R., Shafique, M.: Error resilience analysis for systematically employing
approximate computing in convolutional neural networks. In: J. Madsen, A.K. Coskun
(eds.) 2018 Design, Automation & Test in Europe Conference & Exhibition, DATE 2018,
Dresden, Germany, March 19-23, 2018, pp. 913–916. IEEE (2018). DOI 10.23919/DATE.
2018.8342139. URL https://doi.org/10.23919/DATE.2018.8342139

10. Hanif, M.A., Marchisio, A., Arif, T., Hafiz, R., Rehman, S., Shafique, M.: X-dnns: Systematic
cross-layer approximations for energy-efficient deep neural networks. J. Low Power Electron.

24 A. Marchisio et al.

14(4), 520–534 (2018). DOI 10.1166/jolpe.2018.1575. URL https://doi.org/10.1166/
jolpe.2018.1575

11. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: T. Honkela,
W. Duch, M.A. Girolami, S. Kaski (eds.) Artificial Neural Networks and Machine Learning -
ICANN 2011 - 21st International Conference on Artificial Neural Networks, Espoo, Finland,
June 14-17, 2011, Proceedings, Part I, Lecture Notes in Computer Science, vol. 6791, pp.
44–51. Springer (2011). DOI 10.1007/978-3-642-21735-7_6. URL https://doi.org/
10.1007/978-3-642-21735-7_6

12. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net (2018). URL https:
//openreview.net/forum?id=HJWLfGWRb

13. Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto
(2012)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: P.L. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, K.Q.
Weinberger (eds.) Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012. Proceedings
of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, pp.
1106–1114 (2012). URL https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998). DOI 10.1109/5.726791. URL https:
//doi.org/10.1109/5.726791

16. Li, S., Chen, K., Ahn, J.H., Brockman, J.B., Jouppi, N.P.: CACTI-P: architecture-level modeling
for sram-based structures with advanced leakage reduction techniques. In: J.R. Phillips, A.J.
Hu, H. Graeb (eds.) 2011 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 2011, San Jose, California, USA, November 7-10, 2011, pp. 694–701. IEEE Computer
Society (2011). DOI 10.1109/ICCAD.2011.6105405. URL https://doi.org/10.1109/
ICCAD.2011.6105405

17. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017). URL https:
//openreview.net/forum?id=Skq89Scxx

18. Marchisio, A., Bussolino, B., Colucci, A., Hanif, M.A., Martina, M., Masera, G., Shafique, M.:
Fastrcaps: An integrated framework for fast yet accurate training of capsule networks. In: 2020
International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom,
July 19-24, 2020, pp. 1–8. IEEE (2020). DOI 10.1109/IJCNN48605.2020.9207533. URL
https://doi.org/10.1109/IJCNN48605.2020.9207533

19. Marchisio, A., Bussolino, B., Colucci, A., Martina, M., Masera, G., Shafique, M.: Q-capsnets:
A specialized framework for quantizing capsule networks. In: 57th ACM/IEEE Design
Automation Conference, DAC 2020, San Francisco, CA, USA, July 20-24, 2020, pp. 1–6.
IEEE (2020). DOI 10.1109/DAC18072.2020.9218746. URL https://doi.org/10.1109/
DAC18072.2020.9218746

20. Marchisio, A., Bussolino, B., Salvati, E., Martina, M., Masera, G., Shafique, M.: Enabling
capsule networks at the edge through approximate softmax and squash operations. In: 2022
IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2022,
Boston, MA, USA, August 1-3, 2022, pp. 1–6. IEEE (2022)

21. Marchisio, A., Hanif, M.A., Khalid, F., Plastiras, G., Kyrkou, C., Theocharides, T., Shafique,
M.: Deep learning for edge computing: Current trends, cross-layer optimizations, and open
research challenges. In: 2019 IEEE Computer Society Annual Symposium on VLSI, ISVLSI
2019, Miami, FL, USA, July 15-17, 2019, pp. 553–559. IEEE (2019). DOI 10.1109/ISVLSI.
2019.00105. URL https://doi.org/10.1109/ISVLSI.2019.00105

22. Marchisio, A., Hanif, M.A., Shafique, M.: Capsacc: An efficient hardware accelerator for
capsulenets with data reuse. In: J. Teich, F. Fummi (eds.) Design, Automation & Test in Europe

Hardware and Software Optimizations for Capsule Networks 25

Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, pp. 964–967. IEEE
(2019). DOI 10.23919/DATE.2019.8714922. URL https://doi.org/10.23919/DATE.
2019.8714922

23. Marchisio, A., Massa, A., Mrazek, V., Bussolino, B., Martina, M., Shafique, M.: Nascaps: A
framework for neural architecture search to optimize the accuracy and hardware efficiency of
convolutional capsule networks. In: IEEE/ACM International Conference On Computer Aided
Design, ICCAD 2020, San Diego, CA, USA, November 2-5, 2020, pp. 114:1–114:9. IEEE
(2020). DOI 10.1145/3400302.3415731. URL https://doi.org/10.1145/3400302.
3415731

24. Marchisio, A., Mrazek, V., Hanif, M.A., Shafique, M.: Red-cane: A systematic methodology
for resilience analysis and design of capsule networks under approximations. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble, France, March
9-13, 2020, pp. 1205–1210. IEEE (2020). DOI 10.23919/DATE48585.2020.9116393. URL
https://doi.org/10.23919/DATE48585.2020.9116393

25. Marchisio, A., Mrazek, V., Hanif, M.A., Shafique, M.: Descnet: Developing efficient scratchpad
memories for capsule network hardware. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 40(9), 1768–1781 (2021). DOI 10.1109/TCAD.2020.3030610. URL https://doi.
org/10.1109/TCAD.2020.3030610

26. Marchisio, A., Mrazek, V., Hanif, M.A., Shafique, M.: FEECA: design space exploration
for low-latency and energy-efficient capsule network accelerators. IEEE Trans. Very Large
Scale Integr. Syst. 29(4), 716–729 (2021). DOI 10.1109/TVLSI.2021.3059518. URL https:
//doi.org/10.1109/TVLSI.2021.3059518

27. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: Capsattacks:
Robust and imperceptible adversarial attacks on capsule networks. CoRR abs/1901.09878
(2019). URL http://arxiv.org/abs/1901.09878

28. Mazzia, V., Salvetti, F., Chiaberge, M.: Efficient-capsnet: Capsule network with self-attention
routing. CoRR abs/2101.12491 (2021). URL https://arxiv.org/abs/2101.12491

29. Michels, F., Uelwer, T., Upschulte, E., Harmeling, S.: On the vulnerability of capsule networks
to adversarial attacks. CoRR abs/1906.03612 (2019). URL http://arxiv.org/abs/1906.
03612

30. Monday, H.N., Li, J., Nneji, G.U., Nahar, S., Hossin, M.A., Jackson, J.: Covid-19 pneumonia
classification based on neurowavelet capsule network. Healthcare 10(3) (2022). DOI 10.3390/
healthcare10030422. URL https://www.mdpi.com/2227-9032/10/3/422

31. Mrazek, V., Hrbacek, R., Vasícek, Z., Sekanina, L.: Evoapproxsb: Library of approximate
adders and multipliers for circuit design and benchmarking of approximation methods. In:
D. Atienza, G.D. Natale (eds.) Design, Automation & Test in Europe Conference & Exhibition,
DATE 2017, Lausanne, Switzerland, March 27-31, 2017, pp. 258–261. IEEE (2017). DOI
10.23919/DATE.2017.7926993. URL https://doi.org/10.23919/DATE.2017.7926993

32. Mrazek, V., Vasícek, Z., Sekanina, L., Hanif, M.A., Shafique, M.: ALWANN: automatic
layer-wise approximation of deep neural network accelerators without retraining. In:
D.Z. Pan (ed.) Proceedings of the International Conference on Computer-Aided Design,
ICCAD 2019, Westminster, CO, USA, November 4-7, 2019, pp. 1–8. ACM (2019). DOI
10.1109/ICCAD45719.2019.8942068. URL https://doi.org/10.1109/ICCAD45719.
2019.8942068

33. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.Z., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: H.M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.B. Fox, R. Garnett (eds.) Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 8024–8035 (2019). URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

26 A. Marchisio et al.

34. Pearson, K., for National Eugenics, G.L.: "Note on Regression and Inheritance in the Case
of Two Parents". Proceedings of the Royal Society. Royal Society (1895). URL https:
//books.google.it/books?id=xst6GwAACAAJ

35. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo, R.:
Deepcaps: Going deeper with capsule networks. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 10725–10733.
Computer Vision Foundation / IEEE (2019). DOI 10.1109/CVPR.2019.01098. URL http:
//openaccess.thecvf.com/content_CVPR_2019/html/Rajasegaran_DeepCaps\
_Going_Deeper_With_Capsule_Networks_CVPR_2019_paper.html

36. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: I. Guyon,
U. von Luxburg, S. Bengio, H.M. Wallach, R. Fergus, S.V.N. Vishwanathan, R. Garnett
(eds.) Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp. 3856–3866 (2017). URL https://proceedings.neurips.cc/paper/2017/hash/
2cad8fa47bbef282badbb8de5374b894-Abstract.html

37. Smith, L.N., Topin, N.: Super-convergence: Very fast training of residual networks using large
learning rates. CoRR abs/1708.07120 (2017). URL http://arxiv.org/abs/1708.07120

38. Tsai, Y.H., Srivastava, N., Goh, H., Salakhutdinov, R.: Capsules with inverted dot-product
attention routing. In: 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020). URL https:
//openreview.net/forum?id=HJe6uANtwH

39. Wu, X., Cao, Y., Lu, H., Liu, S., Wang, D., Wu, Z., Liu, X., Meng, H.: Speech emotion
recognition using sequential capsule networks. IEEE ACM Trans. Audio Speech Lang. Process.
29, 3280–3291 (2021). DOI 10.1109/TASLP.2021.3120586. URL https://doi.org/10.
1109/TASLP.2021.3120586

40. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR abs/1708.07747 (2017). URL http://arxiv.org/
abs/1708.07747

41. Zhao, W., Peng, H., Eger, S., Cambria, E., Yang, M.: Towards scalable and reliable capsule
networks for challenging NLP applications. In: A. Korhonen, D.R. Traum, L. Màrquez (eds.)
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 1549–1559.
Association for Computational Linguistics (2019). DOI 10.18653/v1/p19-1150. URL https:
//doi.org/10.18653/v1/p19-1150

