This paper introduces an effective active learning strategy to iteratively refine the training of Gaussian process models with application to uncertainty quantification. Compared to traditional deterministic approaches or naive random sampling, the proposed approach uses a stochastic measure, i.e., the predictive variance of the output mean, to drive the acquisition of additional training points. The advocated algorithm is shown to outperform alternative strategies in the uncertainty quantification of the insertion loss of a microstrip transmission line with a discontinuity in the ground plane.

A Stochastic Active Learning Strategy for Gaussian Process Models with Application to the Uncertainty Quantification of Signal Integrity / Manfredi, Paolo. - ELETTRONICO. - (2023), pp. 1-3. (Intervento presentato al convegno IEEE Electrical Design of Advanced Packaging and Systems (EDAPS 2023) tenutosi a Flic-en-Flac (Mauritius) nel 12-14 dicembre 2023) [10.1109/edaps58880.2023.10468524].

A Stochastic Active Learning Strategy for Gaussian Process Models with Application to the Uncertainty Quantification of Signal Integrity

Manfredi, Paolo
2023

Abstract

This paper introduces an effective active learning strategy to iteratively refine the training of Gaussian process models with application to uncertainty quantification. Compared to traditional deterministic approaches or naive random sampling, the proposed approach uses a stochastic measure, i.e., the predictive variance of the output mean, to drive the acquisition of additional training points. The advocated algorithm is shown to outperform alternative strategies in the uncertainty quantification of the insertion loss of a microstrip transmission line with a discontinuity in the ground plane.
2023
979-8-3503-8376-8
File in questo prodotto:
File Dimensione Formato  
manfredi-EDAPS-2023-active-learning-GPR-final.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 258.86 kB
Formato Adobe PDF
258.86 kB Adobe PDF Visualizza/Apri
cnf-2024-EDAPS.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 752.71 kB
Formato Adobe PDF
752.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990111