In this work, a novel quercetin solvate of dimethylformamide (QDMF) was studied. The crystal structure was solved using single crystal X-ray diffraction and analysed using synthon analysis and other particle informatics tools (e.g., solvate analyser). The thermal behaviour and thermodynamic stability of QDMF were studied experimentally using Raman spectroscopy, ATR-FTIR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. A clear relationship between the two-step desolvation behaviour of QDMF and the type, strength, and directionality of the main bulk synthons characterizing the QDMF structure was observed. Additionally, the attachment energy model was used to predict the QDMF morphology, together with facet-specific topology and chemical nature of each of the dominant {001}, {110}, and {200} facets. The {200} facet was found to be significantly rougher than the other two; whereas, the {110} was characterized by a higher percentage of exposed DMF molecules compared to the other two facets. Specific scanning electron microscopy and contact angle measurements were used to experimentally detect differences among the three facets and validate the modelling results.

Predicting particle quality attributes of organic crystalline materials using Particle Informatics / Prandini, E.; Cali', E.; Maloney, A. G. P.; Parisi, E.; Simone, E.. - In: POWDER TECHNOLOGY. - ISSN 0032-5910. - 443:(2024). [10.1016/j.powtec.2024.119927]

Predicting particle quality attributes of organic crystalline materials using Particle Informatics

Prandini E.;Cali' E.;Parisi E.;Simone E.
2024

Abstract

In this work, a novel quercetin solvate of dimethylformamide (QDMF) was studied. The crystal structure was solved using single crystal X-ray diffraction and analysed using synthon analysis and other particle informatics tools (e.g., solvate analyser). The thermal behaviour and thermodynamic stability of QDMF were studied experimentally using Raman spectroscopy, ATR-FTIR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. A clear relationship between the two-step desolvation behaviour of QDMF and the type, strength, and directionality of the main bulk synthons characterizing the QDMF structure was observed. Additionally, the attachment energy model was used to predict the QDMF morphology, together with facet-specific topology and chemical nature of each of the dominant {001}, {110}, and {200} facets. The {200} facet was found to be significantly rougher than the other two; whereas, the {110} was characterized by a higher percentage of exposed DMF molecules compared to the other two facets. Specific scanning electron microscopy and contact angle measurements were used to experimentally detect differences among the three facets and validate the modelling results.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0032591024005709-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 7.83 MB
Formato Adobe PDF
7.83 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2989816